Goto

Collaborating Authors

 Optimization


A Multiscale Attentional Framework for Relaxation Neural Networks

Neural Information Processing Systems

Many practical problems in computer vision, pattern recognition, robotics and other areas can be described in terms of constrained optimization. In the past decade, researchers have proposed means of solving such problems with the use of neural networks [Hopfield & Tank, 1985; Koch et ai., 1986], which are thus derived as relaxation dynamics for the objective functions codifying the optimization task. One disturbing aspect of the approach soon became obvious, namely the apparent inabilityof the methods to scale up to practical problems, the principal reason being the rapid increase in the number of local minima present in the objectives as the dimension of the problem increases. Moreover most objectives, E(v), are highly nonlinear, non-convex functions of v, and simple techniques (e.g.


Memory-based Stochastic Optimization

Neural Information Processing Systems

In this paper we introduce new algorithms for optimizing noisy plants in which each experiment is very expensive. The algorithms build a global nonlinear model of the expected output at the same time as using Bayesian linear regression analysis of locally weighted polynomial models. The local model answers queries about confidence, noise,gradient and Hessians, and use them to make automated decisions similar to those made by a practitioner of Response Surface Methodology. The global and local models are combined naturally as a locally weighted regression. We examine the question ofwhether the global model can really help optimization, and we extend it to the case of time-varying functions. We compare the new algorithms with a highly tuned higher-order stochastic optimization algorithmon randomly-generated functions and a simulated manufacturing task. We note significant improvements in total regret, time to converge, and final solution quality. 1 INTRODUCTION In a stochastic optimization problem, noisy samples are taken from a plant. A sample consists of a chosen control u (a vector ofreal numbers) and a noisy observed response y.


Symplectic Nonlinear Component Analysis

Neural Information Processing Systems

Statistically independent features can be extracted by finding a factorial representationof a signal distribution. Principal Component Analysis (PCA) accomplishes this for linear correlated and Gaussian distributedsignals. Independent Component Analysis (ICA), formalized by Comon (1994), extracts features in the case of linear statisticaldependent but not necessarily Gaussian distributed signals. Nonlinear Component Analysis finally should find a factorial representationfor nonlinear statistical dependent distributed signals. This paper proposes for this task a novel feed-forward, information conserving, nonlinear map - the explicit symplectic transformations. It also solves the problem of non-Gaussian output distributions by considering single coordinate higher order statistics. 1 Introduction In previous papers Deco and Brauer (1994) and Parra, Deco, and Miesbach (1995) suggest volume conserving transformations and factorization as the key elements for a nonlinear version of Independent Component Analysis. As a general class of volume conserving transformations Parra et al. (1995) propose the symplectic transformation. It was defined by an implicit nonlinear equation, which leads to a complex relaxation procedure for the function recall. In this paper an explicit form of the symplectic map is proposed, overcoming thus the computational problems.


Stable LInear Approximations to Dynamic Programming for Stochastic Control Problems with Local Transitions

Neural Information Processing Systems

Recently, however, there have been some successful applications of neural networks in a totally different context - that of sequential decision making under uncertainty (stochastic control). Stochastic control problems have been studied extensively in the operations research and control theory literature for a long time, using the methodology of dynamic programming [Bertsekas, 1995]. In dynamic programming, the most important object is the cost-to-go (or value) junction, which evaluates the expected future 1046 B. V. ROY, 1. N. TSITSIKLIS


Softassign versus Softmax: Benchmarks in Combinatorial Optimization

Neural Information Processing Systems

A new technique, termed soft assign, is applied for the first time to two classic combinatorial optimization problems, the traveling salesman problem and graph partitioning. Soft assign, which has emerged from the recurrent neural network/statistical physics framework, enforces two-way (assignment) constraints without the use of penalty terms in the energy functions. The soft assign can also be generalized from two-way winner-take-all constraints to multiple membership constraints which are required for graph partitioning. The soft assign technique is compared to the softmax (Potts glass). Within the statistical physics framework, softmax and a penalty term has been a widely used method for enforcing the two-way constraints common within many combinatorial optimization problems.


A Multiscale Attentional Framework for Relaxation Neural Networks

Neural Information Processing Systems

Many practical problems in computer vision, pattern recognition, robotics and other areas can be described in terms of constrained optimization. In the past decade, researchers have proposed means of solving such problems with the use of neural networks [Hopfield & Tank, 1985; Koch et ai., 1986], which are thus derived as relaxation dynamics for the objective functions codifying the optimization task. One disturbing aspect of the approach soon became obvious, namely the apparent inability of the methods to scale up to practical problems, the principal reason being the rapid increase in the number of local minima present in the objectives as the dimension of the problem increases. Moreover most objectives, E(v), are highly nonlinear, non-convex functions of v, and simple techniques (e.g.


An Information-theoretic Learning Algorithm for Neural Network Classification

Neural Information Processing Systems

A new learning algorithm is developed for the design of statistical classifiers minimizing the rate of misclassification. The method, which is based on ideas from information theory and analogies to statistical physics, assigns data to classes in probability. The distributions arechosen to minimize the expected classification error while simultaneously enforcing the classifier's structure and a level of "randomness" measured by Shannon's entropy. Achievement of the classifier structure is quantified by an associated cost. The constrained optimizationproblem is equivalent to the minimization of a Helmholtz free energy, and the resulting optimization method is a basic extension of the deterministic annealing algorithm that explicitly enforces structural constraints on assignments while reducing theentropy and expected cost with temperature. In the limit of low temperature, the error rate is minimized directly and a hard classifier with the requisite structure is obtained. This learning algorithmcan be used to design a variety of classifier structures. The approach is compared with standard methods for radial basis function design and is demonstrated to substantially outperform other design methods on several benchmark examples, while often retainingdesign complexity comparable to, or only moderately greater than that of strict descent-based methods.


Optimal Asset Allocation using Adaptive Dynamic Programming

Neural Information Processing Systems

Ralph Neuneier* Siemens AG, Corporate Research and Development Otto-Hahn-Ring 6, D-81730 Munchen, Germany Abstract In recent years, the interest of investors has shifted to computerized assetallocation (portfolio management) to exploit the growing dynamics of the capital markets. In this paper, asset allocation is formalized as a Markovian Decision Problem which can be optimized byapplying dynamic programming or reinforcement learning based algorithms. Using an artificial exchange rate, the asset allocation strategyoptimized with reinforcement learning (Q-Learning) is shown to be equivalent to a policy computed by dynamic programming. Theapproach is then tested on the task to invest liquid capital in the German stock market. Here, neural networks are used as value function approximators.


Stable LInear Approximations to Dynamic Programming for Stochastic Control Problems with Local Transitions

Neural Information Processing Systems

Recently, however, there have been some successful applications of neural networks in a totally different context - that of sequential decision making under uncertainty (stochastic control). Stochastic control problems have been studied extensively in the operations research and control theory literature for a long time, using the methodology of dynamic programming [Bertsekas, 1995]. In dynamic programming, the most important object is the cost-to-go (or value) junction, which evaluates the expected future 1046 B.V. ROY, 1. N. TSITSIKLIS


Using Anytime Algorithms in Intelligent Systems

AI Magazine

Anytime algorithms give intelligent systems the capability to trade deliberation time for quality of results. This capability is essential for successful operation in domains such as signal interpretation, real-time diagnosis and repair, and mobile robot control. What characterizes these domains is that it is not feasible (computationally) or desirable (economically) to compute the optimal answer. This article surveys the main control problems that arise when a system is composed of several anytime algorithms. These problems relate to optimal management of uncertainty and precision. After a brief introduction to anytime computation, I outline a wide range of existing solutions to the metalevel control problem and describe current work that is aimed at increasing the applicability of anytime computation.