Goto

Collaborating Authors

Optimization: Instructional Materials


DSC Webinar Series: How to Create Mathematical Optimization Models with Python - DataScienceCentral.com

#artificialintelligence

With mathematical optimization, companies can capture the key features of their business problems in an optimization model and can generate optimal solutions (which are used as the basis to make optimal decisions). Data scientists with some basic mathematical programming skills can easily learn how to build, implement, and maintain mathematical optimization applications. The Gurobi Python API borrows ideas from modeling languages, enabling users to deploy and solve mathematical optimization models with scripts that are easy to write, read, and maintain. Such modules can even be embedded in decision support systems for production-ready applications.


DSC Webinar Series: Mathematical Optimization Modeling: Learn the Basics - DataScienceCentral.com

#artificialintelligence

Mathematical optimization (MO) technologies are being utilized today by leading global companies across industries – including aviation, energy, finance, logistics, telecommunications, manufacturing, media, and many more – to solve a wide range of complex, real-world problems, make optimal, data-driven decisions, and achieve greater operational efficiency. An increasing number of data scientists are adding MO into their analytics toolbox and developing applications that combine MO and machine learning (ML) technologies. In this series of webinars, we will show you how – with MO techniques – you can build interpretable models to tackle your prediction and classification problems. How to formulate an MO model. How to build an MO model using the Gurobi Python API.


The Weights can be Harmful: Pareto Search versus Weighted Search in Multi-Objective Search-Based Software Engineering

arXiv.org Artificial Intelligence

In presence of multiple objectives to be optimized in Search-Based Software Engineering (SBSE), Pareto search has been commonly adopted. It searches for a good approximation of the problem's Pareto optimal solutions, from which the stakeholders choose the most preferred solution according to their preferences. However, when clear preferences of the stakeholders (e.g., a set of weights which reflect relative importance between objectives) are available prior to the search, weighted search is believed to be the first choice since it simplifies the search via converting the original multi-objective problem into a single-objective one and enable the search to focus on what only the stakeholders are interested in. This paper questions such a "weighted search first" belief. We show that the weights can, in fact, be harmful to the search process even in the presence of clear preferences. Specifically, we conduct a large scale empirical study which consists of 38 systems/projects from three representative SBSE problems, together with two types of search budget and nine sets of weights, leading to 604 cases of comparisons. Our key finding is that weighted search reaches a certain level of solution quality by consuming relatively less resources at the early stage of the search; however, Pareto search is at the majority of the time (up to 77% of the cases) significantly better than its weighted counterpart, as long as we allow a sufficient, but not unrealistic search budget. This, together with other findings and actionable suggestions in the paper, allows us to codify pragmatic and comprehensive guidance on choosing weighted and Pareto search for SBSE under the circumstance that clear preferences are available. All code and data can be accessed at: https://github.com/ideas-labo/pareto-vs-weight-for-sbse.


Turnpike in optimal control of PDEs, ResNets, and beyond

arXiv.org Machine Learning

The \emph{turnpike property} in contemporary macroeconomics asserts that if an economic planner seeks to move an economy from one level of capital to another, then the most efficient path, as long as the planner has enough time, is to rapidly move stock to a level close to the optimal stationary or constant path, then allow for capital to develop along that path until the desired term is nearly reached, at which point the stock ought to be moved to the final target. Motivated in part by its nature as a resource allocation strategy, over the past decade, the turnpike property has also been shown to hold for several classes of partial differential equations arising in mechanics. When formalized mathematically, the turnpike theory corroborates the insights from economics: for an optimal control problem set in a finite-time horizon, optimal controls and corresponding states, are close (often exponentially), during most of the time, except near the initial and final time, to the optimal control and corresponding state for the associated stationary optimal control problem. In particular, the former are mostly constant over time. This fact provides a rigorous meaning to the asymptotic simplification that some optimal control problems appear to enjoy over long time intervals, allowing the consideration of the corresponding stationary problem for computing and applications. We review a slice of the theory developed over the past decade --the controllability of the underlying system is an important ingredient, and can even be used to devise simple turnpike-like strategies which are nearly optimal--, and present several novel applications, including, among many others, the characterization of Hamilton-Jacobi-Bellman asymptotics, and stability estimates in deep learning via residual neural networks.


Training OOD Detectors in their Natural Habitats

arXiv.org Artificial Intelligence

Out-of-distribution (OOD) detection is important for machine learning models deployed in the wild. Recent methods use auxiliary outlier data to regularize the model for improved OOD detection. However, these approaches make a strong distributional assumption that the auxiliary outlier data is completely separable from the in-distribution (ID) data. In this paper, we propose a novel framework that leverages wild mixture data -- that naturally consists of both ID and OOD samples. Such wild data is abundant and arises freely upon deploying a machine learning classifier in their \emph{natural habitats}. Our key idea is to formulate a constrained optimization problem and to show how to tractably solve it. Our learning objective maximizes the OOD detection rate, subject to constraints on the classification error of ID data and on the OOD error rate of ID examples. We extensively evaluate our approach on common OOD detection tasks and demonstrate superior performance.


Pushing the Efficiency-Regret Pareto Frontier for Online Learning of Portfolios and Quantum States

arXiv.org Machine Learning

We revisit the classical online portfolio selection problem. It is widely assumed that a trade-off between computational complexity and regret is unavoidable, with Cover's Universal Portfolios algorithm, SOFT-BAYES and ADA-BARRONS currently constituting its state-of-the-art Pareto frontier. In this paper, we present the first efficient algorithm, BISONS, that obtains polylogarithmic regret with memory and per-step running time requirements that are polynomial in the dimension, displacing ADA-BARRONS from the Pareto frontier. Additionally, we resolve a COLT 2020 open problem by showing that a certain Follow-The-Regularized-Leader algorithm with log-barrier regularization suffers an exponentially larger dependence on the dimension than previously conjectured. Thus, we rule out this algorithm as a candidate for the Pareto frontier. We also extend our algorithm and analysis to a more general problem than online portfolio selection, viz. online learning of quantum states with log loss. This algorithm, called SCHRODINGER'S BISONS, is the first efficient algorithm with polylogarithmic regret for this more general problem.


SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

arXiv.org Artificial Intelligence

We propose State Matching Offline DIstribution Correction Estimation (SMODICE), a novel and versatile algorithm for offline imitation learning (IL) via state-occupancy matching. We show that the SMODICE objective admits a simple optimization procedure through an application of Fenchel duality and an analytic solution in tabular MDPs. Without requiring access to expert actions, SMODICE can be effectively applied to three offline IL settings: (i) imitation from observations (IfO), (ii) IfO with dynamics or morphologically mismatched expert, and (iii) example-based reinforcement learning, which we show can be formulated as a state-occupancy matching problem. We extensively evaluate SMODICE on both gridworld environments as well as on high-dimensional offline benchmarks. Our results demonstrate that SMODICE is effective for all three problem settings and significantly outperforms prior state-of-art.


Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT

arXiv.org Artificial Intelligence

Nowadays, the industrial Internet of Things (IIoT) has played an integral role in Industry 4.0 and produced massive amounts of data for industrial intelligence. These data locate on decentralized devices in modern factories. To protect the confidentiality of industrial data, federated learning (FL) was introduced to collaboratively train shared machine learning models. However, the local data collected by different devices skew in class distribution and degrade industrial FL performance. This challenge has been widely studied at the mobile edge, but they ignored the rapidly changing streaming data and clustering nature of factory devices, and more seriously, they may threaten data security. In this paper, we propose FedGS, which is a hierarchical cloud-edge-end FL framework for 5G empowered industries, to improve industrial FL performance on non-i.i.d. data. Taking advantage of naturally clustered factory devices, FedGS uses a gradient-based binary permutation algorithm (GBP-CS) to select a subset of devices within each factory and build homogeneous super nodes participating in FL training. Then, we propose a compound-step synchronization protocol to coordinate the training process within and among these super nodes, which shows great robustness against data heterogeneity. The proposed methods are time-efficient and can adapt to dynamic environments, without exposing confidential industrial data in risky manipulation. We prove that FedGS has better convergence performance than FedAvg and give a relaxed condition under which FedGS is more communication-efficient. Extensive experiments show that FedGS improves accuracy by 3.5% and reduces training rounds by 59% on average, confirming its superior effectiveness and efficiency on non-i.i.d. data.


Graph Coloring with Physics-Inspired Graph Neural Networks

arXiv.org Artificial Intelligence

We show how graph neural networks can be used to solve the canonical graph coloring problem. We frame graph coloring as a multi-class node classification problem and utilize an unsupervised training strategy based on the statistical physics Potts model. Generalizations to other multi-class problems such as community detection, data clustering, and the minimum clique cover problem are straightforward. We provide numerical benchmark results and illustrate our approach with an end-to-end application for a real-world scheduling use case within a comprehensive encode-process-decode framework. Our optimization approach performs on par or outperforms existing solvers, with the ability to scale to problems with millions of variables.


Separating Rule Discovery and Global Solution Composition in a Learning Classifier System

arXiv.org Artificial Intelligence

The utilization of digital agents to support crucial decision making is increasing in many industrial scenarios. However, trust in suggestions made by these agents is hard to achieve, though essential for profiting from their application, resulting in a need for explanations for both the decision making process as well as the model itself. For many systems, such as common deep learning black-box models, achieving at least some explainability requires complex post-processing, while other systems profit from being, to a reasonable extent, inherently interpretable. In this paper we propose an easily interpretable rule-based learning system specifically designed and thus especially suited for these scenarios and compare it on a set of regression problems against XCSF, a prominent rule-based learning system with a long research history. One key advantage of our system is that the rules' conditions and which rules compose a solution to the problem are evolved separately. We utilise independent rule fitnesses which allows users to specifically tailor their model structure to fit the given requirements for explainability. We find that the results of SupRB2's evaluation are comparable to XCSF's while allowing easier control of model structure and showing a substantially smaller sensitivity to random seeds and data splits. This increased control aids in subsequently providing explanations for both the training and the final structure of the model.