Ontologies
Semantic Matching of Security Policies to Support Security Experts
Benammar, Othman, Elasri, Hicham, Sekkaki, Abderrahim
Management of security policies has become increasingly difficult given the number of domains to manage, taken into consideration their extent and their complexity. Security experts has to deal with a variety of frameworks and specification languages used in different domains that may belong to any Cloud Computing or Distributed Systems. This wealth of frameworks and languages make the management task and the interpretation of the security policies so difficult. Each approach provides its own conflict management method or tool, the security expert will be forced to manage all these tools, which makes the field maintenance and time consuming expensive. In order to hide this complexity and to facilitate some security experts tasks and automate the others, we propose a security policies aligning based on ontologies process; this process enables to detect and resolve security policies conflicts and to support security experts in managing tasks.
Integrating Probabilistic, Taxonomic and Causal Knowledge in Abductive Diagnosis
We propose an abductive diagnosis theory that integrates probabilistic, causal and taxonomic knowledge. Probabilistic knowledge allows us to select the most likely explanation; causal knowledge allows us to make reasonable independence assumptions; taxonomic knowledge allows causation to be modeled at different levels of detail, and allows observations be described in different levels of precision. Unlike most other approaches where a causal explanation is a hypothesis that one or more causative events occurred, we define an explanation of a set of observations to be an occurrence of a chain of causation events. These causation events constitute a scenario where all the observations are true. We show that the probabilities of the scenarios can be computed from the conditional probabilities of the causation events. Abductive reasoning is inherently complex even if only modest expressive power is allowed. However, our abduction algorithm is exponential only in the number of observations to be explained, and is polynomial in the size of the knowledge base. This contrasts with many other abduction procedures that are exponential in the size of the knowledge base.
DLOLIS-A: Description Logic based Text Ontology Learning
Dasgupta, Sourish, Padia, Ankur, Shah, Kushal, KaPatel, Rupali, Majumder, Prasenjit
Ontology Learning has been the subject of intensive study for the past decade. Researchers in this field have been motivated by the possibility of automatically building a knowledge base on top of text documents so as to support reasoning based knowledge extraction. While most works in this field have been primarily statistical (known as light-weight Ontology Learning) not much attempt has been made in axiomatic Ontology Learning (called heavy-weight Ontology Learning) from Natural Language text documents. Heavy-weight Ontology Learning supports more precise formal logic-based reasoning when compared to statistical ontology learning. In this paper we have proposed a sound Ontology Learning tool DLOL_(IS-A) that maps English language IS-A sentences into their equivalent Description Logic (DL) expressions in order to automatically generate a consistent pair of T-box and A-box thereby forming both regular (definitional form) and generalized (axiomatic form) DL ontology. The current scope of the paper is strictly limited to IS-A sentences that exclude the possible structures of: (i) implicative IS-A sentences, and (ii) "Wh" IS-A questions. Other linguistic nuances that arise out of pragmatics and epistemic of IS-A sentences are beyond the scope of this present work. We have adopted Gold Standard based Ontology Learning evaluation on chosen IS-A rich Wikipedia documents.
An Ontology-based Multi-level Robot Architecture for Learning from Experiences
Rockel, Sebastian (University of Hamburg) | Neumann, Bernd (University of Hamburg) | Zhang, Jianwei (University of Hamburg) | Dubba, Sandeep Krishna Reddy (University of Leeds) | Cohn, Anthony G. (University of Leeds) | Konecny, Stefan (Örebro University) | Mansouri, Masoumeh (Örebro University) | Pecora, Federico (Örebro University) | Saffiotti, Alessandro (Örebro University) | Günther, Martin (University of Osnabrück) | Stock, Sebastian (University of Osnabrück) | Hertzberg, Joachim (University of Osnabrück) | Tome, Ana Maria (University of Aveiro ) | Pinho, Armando (University of Aveiro) | Lopes, Luis Seabra (University of Aveiro ) | Riegen, Stephanie von (HITeC e.V. ) | Hotz, Lothar (HITeC e.V.)
One way to improve the robustness and flexibility of robot performance is to let the robot learn from its experiences. In this paper, we describe the architecture and knowledge-representation framework for a service robot being developed in the EU project RACE, and present examples illustrating how learning from experiences will be achieved. As a unique innovative feature, the framework combines memory records of low-level robot activities with ontology-based high-level semantic descriptions.
Visualizing and Interacting with Concept Hierarchies
Crampes, Michel, Plantié, Michel
Concept Hierarchies and Formal Concept Analysis are theoretically well grounded and largely experimented methods. They rely on line diagrams called Galois lattices for visualizing and analysing object-attribute sets. Galois lattices are visually seducing and conceptually rich for experts. However they present important drawbacks due to their concept oriented overall structure: analysing what they show is difficult for non experts, navigation is cumbersome, interaction is poor, and scalability is a deep bottleneck for visual interpretation even for experts. In this paper we introduce semantic probes as a means to overcome many of these problems and extend usability and application possibilities of traditional FCA visualization methods. Semantic probes are visual user centred objects which extract and organize reduced Galois sub-hierarchies. They are simpler, clearer, and they provide a better navigation support through a rich set of interaction possibilities. Since probe driven sub-hierarchies are limited to users focus, scalability is under control and interpretation is facilitated. After some successful experiments, several applications are being developed with the remaining problem of finding a compromise between simplicity and conceptual expressivity.
RIO: Minimizing User Interaction in Debugging of Knowledge Bases
Rodler, Patrick, Shchekotykhin, Kostyantyn, Fleiss, Philipp, Friedrich, Gerhard
The best currently known interactive debugging systems rely upon some meta-information in terms of fault probabilities in order to improve their efficiency. However, misleading meta information might result in a dramatic decrease of the performance and its assessment is only possible a-posteriori. Consequently, as long as the actual fault is unknown, there is always some risk of suboptimal interactions. In this work we present a reinforcement learning strategy that continuously adapts its behavior depending on the performance achieved and minimizes the risk of using low-quality meta information. Therefore, this method is suitable for application scenarios where reliable prior fault estimates are difficult to obtain. Using diverse real-world knowledge bases, we show that the proposed interactive query strategy is scalable, features decent reaction time, and outperforms both entropy-based and no-risk strategies on average w.r.t. required amount of user interaction.
Class Algebra for Ontology Reasoning
Buehrer, Daniel, Lee, Chee-Hwa
Class algebra provides a natural framework for sharing of ISA hierarchies between users that may be unaware of each other's definitions. This permits data from relational databases, object-oriented databases, and tagged XML documents to be unioned into one distributed ontology, sharable by all users without the need for prior negotiation or the development of a "standard" ontology for each field. Moreover, class algebra produces a functional correspondence between a class's class algebraic definition (i.e. its "intent") and the set of all instances which satisfy the expression (i.e. its "extent"). The framework thus provides assistance in quickly locating examples and counterexamples of various definitions. This kind of information is very valuable when developing models of the real world, and serves as an invaluable tool assisting in the proof of theorems concerning these class algebra expressions. Finally, the relative frequencies of objects in the ISA hierarchy can produce a useful Boolean algebra of probabilities. The probabilities can be used by traditional information-theoretic classification methodologies to obtain optimal ways of classifying objects in the database.
Knowledge Base Approach for 3D Objects Detection in Point Clouds Using 3D Processing and Specialists Knowledge
Hmida, Helmi Ben, Cruz, Christophe, Boochs, Frank, Nicolle, Christophe
This paper presents a knowledge-based detection of objects approach using the OWL ontology language, the Semantic Web Rule Language, and 3D processing built-ins aiming at combining geometrical analysis of 3D point clouds and specialist's knowledge. Here, we share our experience regarding the creation of 3D semantic facility model out of unorganized 3D point clouds. Thus, a knowledge-based detection approach of objects using the OWL ontology language is presented. This knowledge is used to define SWRL detection rules. In addition, the combination of 3D processing built-ins and topological Built-Ins in SWRL rules allows a more flexible and intelligent detection, and the annotation of objects contained in 3D point clouds. The created WiDOP prototype takes a set of 3D point clouds as input, and produces as output a populated ontology corresponding to an indexed scene visualized within VRML language. The context of the study is the detection of railway objects materialized within the Deutsche Bahn scene such as signals, technical cupboards, electric poles, etc. Thus, the resulting enriched and populated ontology, that contains the annotations of objects in the point clouds, is used to feed a GIS system or an IFC file for architecture purposes.
Toward the Automatic Generation of a Semantic VRML Model from Unorganized 3D Point Clouds
Hmida, Helmi Ben, Cruz, Christophe, Nicolle, Christophe, Boochs, Frank
This paper presents our experience regarding the creation of 3D semantic facility model out of unorganized 3D point clouds. Thus, a knowledge-based detection approach of objects using the OWL ontology language is presented. This knowledge is used to define SWRL detection rules. In addition, the combination of 3D processing built-ins and topological Built-Ins in SWRL rules aims at combining geometrical analysis of 3D point clouds and specialist's knowledge. This combination allows more flexible and intelligent detection and the annotation of objects contained in 3D point clouds. The created WiDOP prototype takes a set of 3D point clouds as input, and produces an indexed scene of colored objects visualized within VRML language as output. The context of the study is the detection of railway objects materialized within the Deutsche Bahn scene such as signals, technical cupboards, electric poles, etc. Therefore, the resulting enriched and populated domain ontology, that contains the annotations of objects in the point clouds, is used to feed a GIS system.
From 9-IM Topological Operators to Qualitative Spatial Relations using 3D Selective Nef Complexes and Logic Rules for bodies
Hmida, Helmi Ben, Cruz, Christophe, Boochs, Frank, Nicolle, Christophe
This paper presents a method to compute automatically topological relations using SWRL rules. The calculation of these rules is based on the definition of a Selective Nef Complexes Nef Polyhedra structure generated from standard Polyhedron. The Selective Nef Complexes is a data model providing a set of binary Boolean operators such as Union, Difference, Intersection and Symmetric difference, and unary operators such as Interior, Closure and Boundary. In this work, these operators are used to compute topological relations between objects defined by the constraints of the 9 Intersection Model (9-IM) from Egenhofer. With the help of these constraints, we defined a procedure to compute the topological relations on Nef polyhedra. These topological relationships are Disjoint, Meets, Contains, Inside, Covers, CoveredBy, Equals and Overlaps, and defined in a top-level ontology with a specific semantic definition on relation such as Transitive, Symmetric, Asymmetric, Functional, Reflexive, and Irreflexive. The results of the computation of topological relationships are stored in an OWL-DL ontology allowing after what to infer on these new relationships between objects. In addition, logic rules based on the Semantic Web Rule Language allows the definition of logic programs that define which topological relationships have to be computed on which kind of objects with specific attributes. For instance, a "Building" that overlaps a "Railway" is a "RailStation".