Goto

Collaborating Authors

 Model-Based Reasoning


Discovering Causal Relations and Equations from Data

arXiv.org Artificial Intelligence

Physics is a field of science that has traditionally used the scientific method to answer questions about why natural phenomena occur and to make testable models that explain the phenomena. Discovering equations, laws and principles that are invariant, robust and causal explanations of the world has been fundamental in physical sciences throughout the centuries. Discoveries emerge from observing the world and, when possible, performing interventional studies in the system under study. With the advent of big data and the use of data-driven methods, causal and equation discovery fields have grown and made progress in computer science, physics, statistics, philosophy, and many applied fields. All these domains are intertwined and can be used to discover causal relations, physical laws, and equations from observational data. This paper reviews the concepts, methods, and relevant works on causal and equation discovery in the broad field of Physics and outlines the most important challenges and promising future lines of research. We also provide a taxonomy for observational causal and equation discovery, point out connections, and showcase a complete set of case studies in Earth and climate sciences, fluid dynamics and mechanics, and the neurosciences. This review demonstrates that discovering fundamental laws and causal relations by observing natural phenomena is being revolutionised with the efficient exploitation of observational data, modern machine learning algorithms and the interaction with domain knowledge. Exciting times are ahead with many challenges and opportunities to improve our understanding of complex systems.


DC-MBR: Distributional Cooling for Minimum Bayesian Risk Decoding

arXiv.org Artificial Intelligence

Minimum Bayesian Risk Decoding (MBR) emerges as a promising decoding algorithm in Neural Machine Translation. However, MBR performs poorly with label smoothing, which is surprising as label smoothing provides decent improvement with beam search and improves generality in various tasks. In this work, we show that the issue arises from the un-consistency of label smoothing on the token-level and sequence-level distributions. We demonstrate that even though label smoothing only causes a slight change in the token-level, the sequence-level distribution is highly skewed. We coin the issue \emph{autoregressive over-smoothness}. To address this issue, we propose a simple and effective method, Distributional Cooling MBR (DC-MBR), which manipulates the entropy of output distributions by tuning down the Softmax temperature. We theoretically prove the equivalence between pre-tuning label smoothing factor and distributional cooling. Extensive experiments on NMT benchmarks validate that distributional cooling improves MBR in various settings.


PETAL: Physics Emulation Through Averaged Linearizations for Solving Inverse Problems

arXiv.org Artificial Intelligence

Inverse problems describe the task of recovering an underlying signal of interest given observables. Typically, the observables are related via some non-linear forward model applied to the underlying unknown signal. Inverting the non-linear forward model can be computationally expensive, as it often involves computing and inverting a linearization at a series of estimates. Rather than inverting the physics-based model, we instead train a surrogate forward model (emulator) and leverage modern auto-grad libraries to solve for the input within a classical optimization framework. Current methods to train emulators are done in a black box supervised machine learning fashion and fail to take advantage of any existing knowledge of the forward model. In this article, we propose a simple learned weighted average model that embeds linearizations of the forward model around various reference points into the model itself, explicitly incorporating known physics. Grounding the learned model with physics based linearizations improves the forward modeling accuracy and provides richer physics based gradient information during the inversion process leading to more accurate signal recovery. We demonstrate the efficacy on an ocean acoustic tomography (OAT) example that aims to recover ocean sound speed profile (SSP) variations from acoustic observations (e.g.


Generalizing Goal-Conditioned Reinforcement Learning with Variational Causal Reasoning

arXiv.org Artificial Intelligence

As a pivotal component to attaining generalizable solutions in human intelligence, reasoning provides great potential for reinforcement learning (RL) agents' generalization towards varied goals by summarizing part-to-whole arguments and discovering cause-and-effect relations. However, how to discover and represent causalities remains a huge gap that hinders the development of causal RL. In this paper, we augment Goal-Conditioned RL (GCRL) with Causal Graph (CG), a structure built upon the relation between objects and events. We novelly formulate the GCRL problem into variational likelihood maximization with CG as latent variables. To optimize the derived objective, we propose a framework with theoretical performance guarantees that alternates between two steps: using interventional data to estimate the posterior of CG; using CG to learn generalizable models and interpretable policies. Due to the lack of public benchmarks that verify generalization capability under reasoning, we design nine tasks and then empirically show the effectiveness of the proposed method against five baselines on these tasks. Further theoretical analysis shows that our performance improvement is attributed to the virtuous cycle of causal discovery, transition modeling, and policy training, which aligns with the experimental evidence in extensive ablation studies.


NeuSTIP: A Novel Neuro-Symbolic Model for Link and Time Prediction in Temporal Knowledge Graphs

arXiv.org Artificial Intelligence

While Knowledge Graph Completion (KGC) on static facts is a matured field, Temporal Knowledge Graph Completion (TKGC), that incorporates validity time into static facts is still in its nascent stage. The KGC methods fall into multiple categories including embedding-based, rule-based, GNN-based, pretrained Language Model based approaches. However, such dimensions have not been explored in TKG. To that end, we propose a novel temporal neuro-symbolic model, NeuSTIP, that performs link prediction and time interval prediction in a TKG. NeuSTIP learns temporal rules in the presence of the Allen predicates that ensure the temporal consistency between neighboring predicates in a given rule. We further design a unique scoring function that evaluates the confidence of the candidate answers while performing link prediction and time interval prediction by utilizing the learned rules. Our empirical evaluation on two time interval based TKGC datasets suggests that our model outperforms state-of-the-art models for both link prediction and the time interval prediction task.


Physics-based parameterized neural ordinary differential equations: prediction of laser ignition in a rocket combustor

arXiv.org Artificial Intelligence

In this work, we present a novel physics-based data-driven framework for reduced-order modeling of laser ignition in a model rocket combustor based on parameterized neural ordinary differential equations (PNODE). Deep neural networks are embedded as functions of high-dimensional parameters of laser ignition to predict various terms in a 0D flow model including the heat source function, pre-exponential factors, and activation energy. Using the governing equations of a 0D flow model, our PNODE needs only a limited number of training samples and predicts trajectories of various quantities such as temperature, pressure, and mass fractions of species while satisfying physical constraints. We validate our physics-based PNODE on solution snapshots of high-fidelity Computational Fluid Dynamics (CFD) simulations of laser-induced ignition in a prototype rocket combustor. We compare the performance of our physics-based PNODE with that of kernel ridge regression and fully connected neural networks. Our results show that our physics-based PNODE provides solutions with lower mean absolute errors of average temperature over time, thus improving the prediction of successful laser ignition with high-dimensional parameters.


A physics-based domain adaptation framework for modelling and forecasting building energy systems

arXiv.org Artificial Intelligence

State-of-the-art machine-learning-based models are a popular choice for modeling and forecasting energy behavior in buildings because given enough data, they are good at finding spatiotemporal patterns and structures even in scenarios where the complexity prohibits analytical descriptions. However, their architecture typically does not hold physical correspondence to mechanistic structures linked with governing physical phenomena. As a result, their ability to successfully generalize for unobserved timesteps depends on the representativeness of the dynamics underlying the observed system in the data, which is difficult to guarantee in real-world engineering problems such as control and energy management in digital twins. In response, we present a framework that combines lumped-parameter models in the form of linear time-invariant (LTI) state-space models (SSMs) with unsupervised reduced-order modeling in a subspace-based domain adaptation (SDA) framework. SDA is a type of transfer-learning (TL) technique, typically adopted for exploiting labeled data from one domain to predict in a different but related target domain for which labeled data is limited. We introduce a novel SDA approach where instead of labeled data, we leverage the geometric structure of the LTI SSM governed by well-known heat transfer ordinary differential equations to forecast for unobserved timesteps beyond observed measurement data. Fundamentally, our approach geometrically aligns the physics-derived and data-derived embedded subspaces closer together. In this initial exploration, we evaluate the physics-based SDA framework on a demonstrative heat conduction scenario by varying the thermophysical properties of the source and target systems to demonstrate the transferability of mechanistic models from a physics-based domain to a data domain.


MINN: Learning the dynamics of differential-algebraic equations and application to battery modeling

arXiv.org Artificial Intelligence

The concept of integrating physics-based and data-driven approaches has become popular for modeling sustainable energy systems. However, the existing literature mainly focuses on the data-driven surrogates generated to replace physics-based models. These models often trade accuracy for speed but lack the generalisability, adaptability, and interpretability inherent in physics-based models, which are often indispensable in the modeling of real-world dynamic systems for optimization and control purposes. In this work, we propose a novel architecture for generating model-integrated neural networks (MINN) to allow integration on the level of learning physics-based dynamics of the system. The obtained hybrid model solves an unsettled research problem in control-oriented modeling, i.e., how to obtain an optimally simplified model that is physically insightful, numerically accurate, and computationally tractable simultaneously. We apply the proposed neural network architecture to model the electrochemical dynamics of lithium-ion batteries and show that MINN is extremely data-efficient to train while being sufficiently generalizable to previously unseen input data, owing to its underlying physical invariants. The MINN battery model has an accuracy comparable to the first principle-based model in predicting both the system outputs and any locally distributed electrochemical behaviors but achieves two orders of magnitude reduction in the solution time.


Physics-informed Reduced-Order Learning from the First Principles for Simulation of Quantum Nanostructures

arXiv.org Artificial Intelligence

Multi-dimensional direct numerical simulation (DNS) of the Schrödinger equation is needed for design and analysis of quantum nanostructures that offer numerous applications in biology, medicine, materials, electronic/photonic devices, etc. In large-scale nanostructures, extensive computational effort needed in DNS may become prohibitive due to the high degrees of freedom (DoF). This study employs a physics-based reduced-order learning algorithm, enabled by the first principles, for simulation of the Schrödinger equation to achieve high accuracy and efficiency. The proposed simulation methodology is applied to investigate two quantum-dot structures; one operates under external electric field, and the other is influenced by internal potential variation with periodic boundary conditions. The former is similar to typical operations of nanoelectronic devices, and the latter is of interest to simulation and design of nanostructures and materials, such as applications of density functional theory. In each structure, cases within and beyond training conditions are examined. Using the proposed methodology, a very accurate prediction can be realized with a reduction in the DoF by more than 3 orders of magnitude and in the computational time by 2 orders, compared to DNS. An accurate prediction beyond the training conditions, including higher external field and larger internal potential in untrained quantum states, is also achieved. Comparison is also carried out between the physics-based learning and Fourier-based plane-wave approaches for a periodic case.


Second Order Approximations for Probability Models

Neural Information Processing Systems

In this paper, we derive a second order mean field theory for directed graphical probability models. By using an information theoretic argu(cid:173) ment it is shown how this can be done in the absense of a partition function. This method is a direct generalisation of the well-known TAP approximation for Boltzmann Machines. In a numerical example, it is shown that the method greatly improves the first order mean field ap(cid:173) proximation. For a restricted class of graphical models, so-called single overlap graphs, the second order method has comparable complexity to the first order method.