Model-Based Reasoning
Versatile Physics-based Character Control with Hybrid Latent Representation
Bae, Jinseok, Won, Jungdam, Lim, Donggeun, Hwang, Inwoo, Kim, Young Min
We present a versatile latent representation that enables physically simulated character to efficiently utilize motion priors. To build a powerful motion embedding that is shared across multiple tasks, the physics controller should employ rich latent space that is easily explored and capable of generating high-quality motion. We propose integrating continuous and discrete latent representations to build a versatile motion prior that can be adapted to a wide range of challenging control tasks. Specifically, we build a discrete latent model to capture distinctive posterior distribution without collapse, and simultaneously augment the sampled vector with the continuous residuals to generate high-quality, smooth motion without jittering. We further incorporate Residual Vector Quantization, which not only maximizes the capacity of the discrete motion prior, but also efficiently abstracts the action space during the task learning phase. We demonstrate that our agent can produce diverse yet smooth motions simply by traversing the learned motion prior through unconditional motion generation. Furthermore, our model robustly satisfies sparse goal conditions with highly expressive natural motions, including head-mounted device tracking and motion in-betweening at irregular intervals, which could not be achieved with existing latent representations.
SEA: State-Exchange Attention for High-Fidelity Physics Based Transformers
Current approaches using sequential networks have shown promise in estimating field variables for dynamical systems, but they are often limited by high rollout errors. The unresolved issue of rollout error accumulation results in unreliable estimations as the network predicts further into the future, with each step's error compounding and leading to an increase in inaccuracy. Here, we introduce the State-Exchange Attention (SEA) module, a novel transformer-based module enabling information exchange between encoded fields through multi-head cross-attention. The cross-field multidirectional information exchange design enables all state variables in the system to exchange information with one another, capturing physical relationships and symmetries between fields. Additionally, we introduce an efficient ViT-like mesh autoencoder to generate spatially coherent mesh embeddings for a large number of meshing cells.
ChaosBench: A Multi-Channel, Physics-Based Benchmark for Subseasonal-to-Seasonal Climate Prediction
Accurate prediction of climate in the subseasonal-to-seasonal scale is crucial for disaster preparedness and robust decision making amidst climate change. Yet, forecasting beyond the weather timescale is challenging because it deals with problems other than initial condition, including boundary interaction, butterfly effect, and our inherent lack of physical understanding. At present, existing benchmarks tend to have shorter forecasting range of up-to 15 days, do not include a wide range of operational baselines, and lack physics-based constraints for explainability. Thus, we propose ChaosBench, a challenging benchmark to extend the predictability range of data-driven weather emulators to S2S timescale. First, ChaosBench is comprised of variables beyond the typical surface-atmospheric ERA5 to also include ocean, ice, and land reanalysis products that span over 45 years to allow for full Earth system emulation that respects boundary conditions.
Optimal-state Dynamics Estimation for Physics-based Human Motion Capture from Videos
Human motion capture from monocular videos has made significant progress in recent years. However, modern approaches often produce temporal artifacts, e.g. in form of jittery motion and struggle to achieve smooth and physically plausible motions. Explicitly integrating physics, in form of internal forces and exterior torques, helps alleviating these artifacts. Current state-of-the-art approaches make use of an automatic PD controller to predict torques and reaction forces in order to re-simulate the input kinematics, i.e. the joint angles of a predefined skeleton. However, due to imperfect physical models, these methods often require simplifying assumptions and extensive preprocessing of the input kinematics to achieve good performance.
Mechanism design augmented with output advice
Our work revisits the design of mechanisms via the learning-augmented framework. In this model, the algorithm is enhanced with imperfect (machine-learned) information concerning the input, usually referred to as prediction. The goal is to design algorithms whose performance degrades gently as a function of the prediction error and, in particular, perform well if the prediction is accurate, but also provide a worst-case guarantee under any possible error. This framework has been successfully applied recently to various mechanism design settings, where in most cases the mechanism is provided with a prediction about the types of the players.We adopt a perspective in which the mechanism is provided with an output recommendation. We make no assumptions about the quality of the suggested outcome, and the goal is to use the recommendation to design mechanisms with low approximation guarantees whenever the recommended outcome is reasonable, but at the same time to provide worst-case guarantees whenever the recommendation significantly deviates from the optimal one.
Physics-Regularized Multi-Modal Image Assimilation for Brain Tumor Localization
Physical models in the form of partial differential equations serve as important priors for many under-constrained problems. One such application is tumor treatment planning, which relies on accurately estimating the spatial distribution of tumor cells within a patient's anatomy. While medical imaging can detect the bulk of a tumor, it cannot capture the full extent of its spread, as low-concentration tumor cells often remain undetectable, particularly in glioblastoma, the most common primary brain tumor. Machine learning approaches struggle to estimate the complete tumor cell distribution due to a lack of appropriate training data. Consequently, most existing methods rely on physics-based simulations to generate anatomically and physiologically plausible estimations. However, these approaches face challenges with complex and unknown initial conditions and are constrained by overly rigid physical models.
COLD: Causal reasOning in cLosed Daily activities
Large Language Models (LLMs) have shown state-of-the-art performance in a variety of tasks, including arithmetic and reasoning; however, to gauge the intellectual capabilities of LLMs, causal reasoning has become a reliable proxy for validating a general understanding of the mechanics and intricacies of the world similar to humans. Previous works in natural language processing (NLP) have either focused on open-ended causal reasoning via causal commonsense reasoning (CCR) or framed a symbolic representation-based question answering for theoretically backed-up analysis via a causal inference engine. The former adds an advantage of real-world grounding but lacks theoretically backed-up analysis/validation, whereas the latter is far from real-world grounding. In this work, we bridge this gap by proposing the COLD (Causal reasOning in cLosed Daily activities) framework, which is built upon human understanding of daily real-world activities to reason about the causal nature of events. We show that the proposed framework facilitates the creation of enormous causal queries ( 9 million) and comes close to the mini-turing test, simulating causal reasoning to evaluate the understanding of a daily real-world task.
Compositional Causal Reasoning Evaluation in Language Models
Maasch, Jacqueline R. M. A., Hรผyรผk, Alihan, Xu, Xinnuo, Nori, Aditya V., Gonzalez, Javier
Causal reasoning and compositional reasoning are two core aspirations in generative AI. Measuring the extent of these behaviors requires principled evaluation methods. We explore a unified perspective that considers both behaviors simultaneously, termed compositional causal reasoning (CCR): the ability to infer how causal measures compose and, equivalently, how causal quantities propagate through graphs. We instantiate a framework for the systematic evaluation of CCR for the average treatment effect and the probability of necessity and sufficiency. As proof of concept, we demonstrate the design of CCR tasks for language models in the LLama, Phi, and GPT families. On a math word problem, our framework revealed a range of taxonomically distinct error patterns. Additionally, CCR errors increased with the complexity of causal paths for all models except o1.
Diffuse-CLoC: Guided Diffusion for Physics-based Character Look-ahead Control
Huang, Xiaoyu, Truong, Takara, Zhang, Yunbo, Yu, Fangzhou, Sleiman, Jean Pierre, Hodgins, Jessica, Sreenath, Koushil, Farshidian, Farbod
We present Diffuse-CLoC, a guided diffusion framework for physics-based look-ahead control that enables intuitive, steerable, and physically realistic motion generation. While existing kinematics motion generation with diffusion models offer intuitive steering capabilities with inference-time conditioning, they often fail to produce physically viable motions. In contrast, recent diffusion-based control policies have shown promise in generating physically realizable motion sequences, but the lack of kinematics prediction limits their steerability. Diffuse-CLoC addresses these challenges through a key insight: modeling the joint distribution of states and actions within a single diffusion model makes action generation steerable by conditioning it on the predicted states. This approach allows us to leverage established conditioning techniques from kinematic motion generation while producing physically realistic motions. As a result, we achieve planning capabilities without the need for a high-level planner. Our method handles a diverse set of unseen long-horizon downstream tasks through a single pre-trained model, including static and dynamic obstacle avoidance, motion in-betweening, and task-space control. Experimental results show that our method significantly outperforms the traditional hierarchical framework of high-level motion diffusion and low-level tracking.
From Task-Specific Models to Unified Systems: A Review of Model Merging Approaches
Ruan, Wei, Yang, Tianze, Zhou, Yifan, Liu, Tianming, Lu, Jin
Model merging has achieved significant success, with numerous innovative methods proposed to enhance capabilities by combining multiple models. However, challenges persist due to the lack of a unified framework for classification and systematic comparative analysis, leading to inconsistencies in terminologies and categorizations. Meanwhile, as an increasing number of fine-tuned models are publicly available, their original training data often remain inaccessible due to privacy concerns or intellectual property restrictions. This makes traditional multi-task learning based on shared training data impractical. In scenarios where direct access to training data is infeasible, merging model parameters to create a unified model with broad generalization across multiple domains becomes crucial, further underscoring the importance of model merging techniques. Despite the rapid progress in this field, a comprehensive taxonomy and survey summarizing recent advances and predicting future directions are still lacking. This paper addresses these gaps by establishing a new taxonomy of model merging methods, systematically comparing different approaches, and providing an overview of key developments. By offering a structured perspective on this evolving area, we aim to help newcomers quickly grasp the field's landscape and inspire further innovations.