Mechanism design augmented with output advice

Neural Information Processing Systems 

Our work revisits the design of mechanisms via the learning-augmented framework. In this model, the algorithm is enhanced with imperfect (machine-learned) information concerning the input, usually referred to as prediction. The goal is to design algorithms whose performance degrades gently as a function of the prediction error and, in particular, perform well if the prediction is accurate, but also provide a worst-case guarantee under any possible error. This framework has been successfully applied recently to various mechanism design settings, where in most cases the mechanism is provided with a prediction about the types of the players.We adopt a perspective in which the mechanism is provided with an output recommendation. We make no assumptions about the quality of the suggested outcome, and the goal is to use the recommendation to design mechanisms with low approximation guarantees whenever the recommended outcome is reasonable, but at the same time to provide worst-case guarantees whenever the recommendation significantly deviates from the optimal one.