Goto

Collaborating Authors

 Belief Revision


Very loopy belief propagation for unwrapping phase images

Neural Information Processing Systems

Since the discovery that the best error-correcting decoding algo(cid:173) rithm can be viewed as belief propagation in a cycle-bound graph, researchers have been trying to determine under what circum(cid:173) stances "loopy belief propagation" is effective for probabilistic infer(cid:173) ence. Despite several theoretical advances in our understanding of loopy belief propagation, to our knowledge, the only problem that has been solved using loopy belief propagation is error-correcting decoding on Gaussian channels. We propose a new representation for the two-dimensional phase unwrapping problem, and we show that loopy belief propagation produces results that are superior to existing techniques. This is an important result, since many imag(cid:173) ing techniques, including magnetic resonance imaging and interfer(cid:173) ometric synthetic aperture radar, produce phase-wrapped images. Interestingly, the graph that we use has a very large number of very short cycles, supporting evidence that a large minimum cycle length is not needed for excellent results using belief propagation.


Validity Estimates for Loopy Belief Propagation on Binary Real-world Networks

Neural Information Processing Systems

We introduce a computationally efficient method to estimate the valid- ity of the BP method as a function of graph topology, the connectiv- ity strength, frustration and network size. We present numerical results that demonstrate the correctness of our estimates for the uniform random model and for a real-world network ("C. Although the method is restricted to pair-wise interactions, no local evidence (zero "biases") and binary variables, we believe that its predictions correctly capture the limitations of BP for inference and MAP estimation on arbitrary graphi- cal models. Using this approach, we find that BP always performs better than MF. Especially for large networks with broad degree distributions (such as scale-free networks) BP turns out to significantly outperform MF.


Human Goal Recognition as Bayesian Inference: Investigating the Impact of Actions, Timing, and Goal Solvability

arXiv.org Artificial Intelligence

Goal recognition is a fundamental cognitive process that enables individuals to infer intentions based on available cues. Current goal recognition algorithms often take only observed actions as input, but here we use a Bayesian framework to explore the role of actions, timing, and goal solvability in goal recognition. We analyze human responses to goal-recognition problems in the Sokoban domain, and find that actions are assigned most importance, but that timing and solvability also influence goal recognition in some cases, especially when actions are uninformative. We leverage these findings to develop a goal recognition model that matches human inferences more closely than do existing algorithms. Our work provides new insight into human goal recognition and takes a step towards more human-like AI models.


Entropy-regularized Point-based Value Iteration

arXiv.org Artificial Intelligence

Model-based planners for partially observable problems must accommodate both model uncertainty during planning and goal uncertainty during objective inference. However, model-based planners may be brittle under these types of uncertainty because they rely on an exact model and tend to commit to a single optimal behavior. Inspired by results in the model-free setting, we propose an entropy-regularized model-based planner for partially observable problems. Entropy regularization promotes policy robustness for planning and objective inference by encouraging policies to be no more committed to a single action than necessary. We evaluate the robustness and objective inference performance of entropy-regularized policies in three problem domains. Our results show that entropy-regularized policies outperform non-entropy-regularized baselines in terms of higher expected returns under modeling errors and higher accuracy during objective inference.


Gaussian Ensemble Belief Propagation for Efficient Inference in High-Dimensional Systems

arXiv.org Machine Learning

Efficient inference in high-dimensional models remains a central challenge in machine learning. This paper introduces the Gaussian Ensemble Belief Propagation (GEnBP) algorithm, a fusion of the Ensemble Kalman filter and Gaussian belief propagation (GaBP) methods. GEnBP updates ensembles by passing low-rank local messages in a graphical model structure. This combination inherits favourable qualities from each method. Ensemble techniques allow GEnBP to handle high-dimensional states, parameters and intricate, noisy, black-box generation processes. The use of local messages in a graphical model structure ensures that the approach is suited to distributed computing and can efficiently handle complex dependence structures. GEnBP is particularly advantageous when the ensemble size is considerably smaller than the inference dimension. This scenario often arises in fields such as spatiotemporal modelling, image processing and physical model inversion. GEnBP can be applied to general problem structures, including jointly learning system parameters, observation parameters, and latent state variables.


Distributed Simultaneous Localisation and Auto-Calibration using Gaussian Belief Propagation

arXiv.org Artificial Intelligence

We present a novel scalable, fully distributed, and online method for simultaneous localisation and extrinsic calibration for multi-robot setups. Individual a priori unknown robot poses are probabilistically inferred as robots sense each other while simultaneously calibrating their sensors and markers extrinsic using Gaussian Belief Propagation. In the presented experiments, we show how our method not only yields accurate robot localisation and auto-calibration but also is able to perform under challenging circumstances such as highly noisy measurements, significant communication failures or limited communication range.


Learning from Label Proportions: Bootstrapping Supervised Learners via Belief Propagation

arXiv.org Artificial Intelligence

Learning from Label Proportions (LLP) is a learning problem where only aggregate level labels are available for groups of instances, called bags, during training, and the aim is to get the best performance at the instance-level on the test data. This setting arises in domains like advertising and medicine due to privacy considerations. We propose a novel algorithmic framework for this problem that iteratively performs two main steps. For the first step (Pseudo Labeling) in every iteration, we define a Gibbs distribution over binary instance labels that incorporates a) covariate information through the constraint that instances with similar covariates should have similar labels and b) the bag level aggregated label. We then use Belief Propagation (BP) to marginalize the Gibbs distribution to obtain pseudo labels. In the second step (Embedding Refinement), we use the pseudo labels to provide supervision for a learner that yields a better embedding. In the final iteration, a classifier is trained using the pseudo labels. Our algorithm displays strong gains against several SOTA baselines (up to 15%) for the LLP Binary Classification problem on various dataset types - tabular and Image. We achieve these improvements with minimal computational overhead above standard supervised learning due to Belief Propagation, for large bag sizes, even for a million samples. Learning from Label Proportions (henceforth LLP) has seen renewed interest in recent times due to the rising concerns of privacy and leakage of sensitive information (Ardehaly & Culotta, 2017; Busa-Fekete et al., 2023; Zhang et al., 2022; Kobayashi et al., 2022; Yu et al., 2014). In the LLP binary classification setting, all the training instances are aggregated into bags and only the aggregated label count for a bag is available, i.e. proportion of 1's in a bag. Features of all instances are available. This can be seen as a form of weak supervision compared to providing instance-level labels.


Token-Level Contrastive Learning with Modality-Aware Prompting for Multimodal Intent Recognition

arXiv.org Artificial Intelligence

Multimodal intent recognition aims to leverage diverse modalities such as expressions, body movements and tone of speech to comprehend user's intent, constituting a critical task for understanding human language and behavior in real-world multimodal scenarios. Nevertheless, the majority of existing methods ignore potential correlations among different modalities and own limitations in effectively learning semantic features from nonverbal modalities. In this paper, we introduce a token-level contrastive learning method with modality-aware prompting (TCL-MAP) to address the above challenges. To establish an optimal multimodal semantic environment for text modality, we develop a modality-aware prompting module (MAP), which effectively aligns and fuses features from text, video and audio modalities with similarity-based modality alignment and cross-modality attention mechanism. Based on the modality-aware prompt and ground truth labels, the proposed token-level contrastive learning framework (TCL) constructs augmented samples and employs NT-Xent loss on the label token. Specifically, TCL capitalizes on the optimal textual semantic insights derived from intent labels to guide the learning processes of other modalities in return. Extensive experiments show that our method achieves remarkable improvements compared to state-of-the-art methods. Additionally, ablation analyses demonstrate the superiority of the modality-aware prompt over the handcrafted prompt, which holds substantial significance for multimodal prompt learning. The codes are released at https://github.com/thuiar/TCL-MAP.


Reasoning with random sets: An agenda for the future

arXiv.org Artificial Intelligence

The theory of belief functions [162, 67] is a modelling language for representing and combining elementary items of evidence, which do not necessarily come in the form of sharp statements, with the goal of maintaining a mathematical representation of an agent's beliefs about those aspects of the world which the agent is unable to predict with reasonable certainty. While arguably a more appropriate mathematical description of uncertainty than classical probability theory, for the reasons we have thoroughly explored in [50], the theory of evidence is relatively simple to understand and implement, and does not require one to abandon the notion of an event, as is the case, for instance, for Walley's imprecise probability theory [193]. It is grounded in the beautiful mathematics of random sets, and exhibits strong relationships with many other theories of uncertainty. As mathematical objects, belief functions have fascinating properties in terms of their geometry, algebra [207] and combinatorics. Despite initial concerns about the computational complexity of a naive implementation of the theory of evidence, evidential reasoning can actually be implemented on large sample spaces [156] and in situations involving the combination of numerous pieces of evidence [74]. Elementary items of evidence often induce simple belief functions, which can be combined very efficiently with complexity O(n + 1).


Stein Variational Belief Propagation for Multi-Robot Coordination

arXiv.org Artificial Intelligence

Decentralized coordination for multi-robot systems involves planning in challenging, high-dimensional spaces. The planning problem is particularly challenging in the presence of obstacles and different sources of uncertainty such as inaccurate dynamic models and sensor noise. In this paper, we introduce Stein Variational Belief Propagation (SVBP), a novel algorithm for performing inference over nonparametric marginal distributions of nodes in a graph. We apply SVBP to multi-robot coordination by modelling a robot swarm as a graphical model and performing inference for each robot. We demonstrate our algorithm on a simulated multi-robot perception task, and on a multi-robot planning task within a Model-Predictive Control (MPC) framework, on both simulated and real-world mobile robots. Our experiments show that SVBP represents multi-modal distributions better than sampling-based or Gaussian baselines, resulting in improved performance on perception and planning tasks. Furthermore, we show that SVBP's ability to represent diverse trajectories for decentralized multi-robot planning makes it less prone to deadlock scenarios than leading baselines.