Belief Revision
Nonparanormal Belief Propagation (NPNBP)
The empirical success of the belief propagation approximate inference algorithm has inspired numerous theoretical and algorithmic advances. Yet, for continuous non-Gaussian domains performing belief propagation remains a challenging task: recent innovations such as nonparametric or kernel belief propagation, while useful, come with a substantial computational cost and offer little theoretical guarantees, even for tree structured models.
Bayes-Adaptive Simulation-based Search with Value Function Approximation Arthur Guez,1,2 Nicolas Heess 2 David Silver 2 Peter Dayan
Bayes-adaptive planning offers a principled solution to the explorationexploitation trade-off under model uncertainty. It finds the optimal policy in belief space, which explicitly accounts for the expected effect on future rewards of reductions in uncertainty. However, the Bayes-adaptive solution is typically intractable in domains with large or continuous state spaces. We present a tractable method for approximating the Bayes-adaptive solution by combining simulationbased search with a novel value function approximation technique that generalises appropriately over belief space. Our method outperforms prior approaches in both discrete bandit tasks and simple continuous navigation and control tasks.
Minimum Weight Perfect Matching via Blossom Belief Propagation Sejun Park Michael Chertkov
Max-product Belief Propagation (BP) is a popular message-passing algorithm for computing a Maximum-A-Posteriori (MAP) assignment over a distribution represented by a Graphical Model (GM). It has been shown that BP can solve a number of combinatorial optimization problems including minimum weight matching, shortest path, network flow and vertex cover under the following common assumption: the respective Linear Programming (LP) relaxation is tight, i.e., no integrality gap is present. However, when LP shows an integrality gap, no model has been known which can be solved systematically via sequential applications of BP. In this paper, we develop the first such algorithm, coined Blossom-BP, for solving the minimum weight matching problem over arbitrary graphs. Each step of the sequential algorithm requires applying BP over a modified graph constructed by contractions and expansions of blossoms, i.e., odd sets of vertices.
Constraints Based Convex Belief Propagation
Inference in Markov random fields subject to consistency structure is a fundamental problem that arises in many real-life applications. In order to enforce consistency, classical approaches utilize consistency potentials or encode constraints over feasible instances. Unfortunately this comes at the price of a tremendous computational burden. In this paper we suggest to tackle consistency by incorporating constraints on beliefs. This permits derivation of a closed-form message-passing algorithm which we refer to as the Constraints Based Convex Belief Propagation (CBCBP). Experiments show that CBCBP outperforms the conventional consistency potential based approach, while being at least an order of magnitude faster.
Achieving the KS threshold in the general stochastic block model with linearized acyclic belief propagation
The stochastic block model (SBM) has long been studied in machine learning and network science as a canonical model for clustering and community detection. In the recent years, new developments have demonstrated the presence of threshold phenomena for this model, which have set new challenges for algorithms. For the detection problem in symmetric SBMs, Decelle et al. conjectured that the so-called Kesten-Stigum (KS) threshold can be achieved efficiently. This was proved for two communities, but remained open for three and more communities. We prove this conjecture here, obtaining a general result that applies to arbitrary SBMs with linear size communities. The developed algorithm is a linearized acyclic belief propagation (ABP) algorithm, which mitigates the effects of cycles while provably achieving the KS threshold in O(n ln n) time. This extends prior methods by achieving universally the KS threshold while reducing or preserving the computational complexity. ABP is also connected to a power iteration method on a generalized nonbacktracking operator, formalizing the spectral-message passing interplay described in Krzakala et al., and extending results from Bordenave et al.
Real-Time Planning Under Uncertainty for AUVs Using Virtual Maps
Collado-Gonzalez, Ivana, McConnell, John, Wang, Jinkun, Szenher, Paul, Englot, Brendan
Reliable localization is an essential capability for marine robots navigating in GPS-denied environments. SLAM, commonly used to mitigate dead reckoning errors, still fails in feature-sparse environments or with limited-range sensors. Pose estimation can be improved by incorporating the uncertainty prediction of future poses into the planning process and choosing actions that reduce uncertainty. However, performing belief propagation is computationally costly, especially when operating in large-scale environments. This work proposes a computationally efficient planning under uncertainty frame-work suitable for large-scale, feature-sparse environments. Our strategy leverages SLAM graph and occupancy map data obtained from a prior exploration phase to create a virtual map, describing the uncertainty of each map cell using a multivariate Gaussian. The virtual map is then used as a cost map in the planning phase, and performing belief propagation at each step is avoided. A receding horizon planning strategy is implemented, managing a goal-reaching and uncertainty-reduction tradeoff. Simulation experiments in a realistic underwater environment validate this approach. Experimental comparisons against a full belief propagation approach and a standard shortest-distance approach are conducted.
Robust Online Epistemic Replanning of Multi-Robot Missions
Bramblett, Lauren, Miloradovic, Branko, Sherman, Patrick, Papadopoulos, Alessandro V., Bezzo, Nicola
As Multi-Robot Systems (MRS) become more affordable and computing capabilities grow, they provide significant advantages for complex applications such as environmental monitoring, underwater inspections, or space exploration. However, accounting for potential communication loss or the unavailability of communication infrastructures in these application domains remains an open problem. Much of the applicable MRS research assumes that the system can sustain communication through proximity regulations and formation control or by devising a framework for separating and adhering to a predetermined plan for extended periods of disconnection. The latter technique enables an MRS to be more efficient, but breakdowns and environmental uncertainties can have a domino effect throughout the system, particularly when the mission goal is intricate or time-sensitive. To deal with this problem, our proposed framework has two main phases: i) a centralized planner to allocate mission tasks by rewarding intermittent rendezvous between robots to mitigate the effects of the unforeseen events during mission execution, and ii) a decentralized replanning scheme leveraging epistemic planning to formalize belief propagation and a Monte Carlo tree search for policy optimization given distributed rational belief updates. The proposed framework outperforms a baseline heuristic and is validated using simulations and experiments with aerial vehicles.
Can we forget how we learned? Doxastic redundancy in iterated belief revision
How information was acquired may become irrelevant. An obvious case is when something is confirmed many times. In terms of iterated belief revision, a specific revision may become irrelevant in presence of others. Simple repetitions are an example, but not the only case when this happens. Sometimes, a revision becomes redundant even in presence of none equal, or even no else implying it. A necessary and sufficient condition for the redundancy of the first of a sequence of lexicographic revisions is given. The problem is coNP-complete even with two propositional revisions only. Complexity is the same in the Horn case but only with an unbounded number of revisions: it becomes polynomial with two revisions. Lexicographic revisions are not only relevant by themselves, but also because sequences of them are the most compact of the common mechanisms used to represent the state of an iterated revision process. Shortening sequences of lexicographic revisions is shortening the most compact representations of iterated belief revision states.
Can Similarity-Based Domain-Ordering Reduce Catastrophic Forgetting for Intent Recognition?
Mannekote, Amogh, Tian, Xiaoyi, Boyer, Kristy Elizabeth, Dorr, Bonnie J.
Task-oriented dialogue systems are expected to handle a constantly expanding set of intents and domains even after they have been deployed to support more and more functionalities. To live up to this expectation, it becomes critical to mitigate the catastrophic forgetting problem (CF) that occurs in continual learning (CL) settings for a task such as intent recognition. While existing dialogue systems research has explored replay-based and regularization-based methods to this end, the effect of domain ordering on the CL performance of intent recognition models remains unexplored. If understood well, domain ordering has the potential to be an orthogonal technique that can be leveraged alongside existing techniques such as experience replay. Our work fills this gap by comparing the impact of three domain-ordering strategies (min-sum path, max-sum path, random) on the CL performance of a generative intent recognition model. Our findings reveal that the min-sum path strategy outperforms the others in reducing catastrophic forgetting when training on the 220M T5-Base model. However, this advantage diminishes with the larger 770M T5-Large model. These results underscores the potential of domain ordering as a complementary strategy for mitigating catastrophic forgetting in continually learning intent recognition models, particularly in resource-constrained scenarios.