Goto

Collaborating Authors

 Automatic Programming


From Symbolic Tasks to Code Generation: Diversification Yields Better Task Performers

arXiv.org Artificial Intelligence

Instruction tuning -- tuning large language models on instruction-output pairs -- is a promising technique for making models better adapted to the real world. Yet, the key factors driving the model's capability to understand and follow instructions not seen during training remain under-explored. Our investigation begins with a series of synthetic experiments within the theoretical framework of a Turing-complete algorithm called Markov algorithm, which allows fine-grained control over the instruction-tuning data. Generalization and robustness with respect to the training distribution emerge once a diverse enough set of tasks is provided, even though very few examples are provided for each task. We extend these initial results to a real-world application scenario of code generation and find that a more diverse instruction set, extending beyond code-related tasks, improves the performance of code generation. Our observations suggest that a more diverse semantic space for instruction-tuning sets greatly improves the model's ability to follow instructions and perform tasks.


ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation

arXiv.org Artificial Intelligence

Code generation plays a crucial role in various tasks, such as code auto-completion and mathematical reasoning. Previous work has proposed numerous methods to enhance code generation performance, including integrating feedback from the compiler. Inspired by this, we present ReflectionCoder, a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Furthermore, we propose reflection self-distillation and dynamically masked distillation to effectively utilize these reflection sequences. Extensive experiments on three benchmarks, i.e., HumanEval (+), MBPP (+), and MultiPl-E, demonstrate that models fine-tuned with our method achieve state-of-the-art performance. Notably, ReflectionCoder-DeepSeek-Coder-33B reaches pass@1 of 82.9 (76.8) on HumanEval (+) and 84.1 (72.0) on MBPP (+), on par with GPT-3.5-Turbo and Claude-3-opus, and surpasses early GPT-4. Beyond the code domain, we believe this approach can benefit other domains that focus on final results and require long reasoning paths. Code and data are available at https://github.com/SenseLLM/ReflectionCoder.


MapCoder: Multi-Agent Code Generation for Competitive Problem Solving

arXiv.org Artificial Intelligence

Code synthesis, which requires a deep understanding of complex natural language problem descriptions, generation of code instructions for complex algorithms and data structures, and the successful execution of comprehensive unit tests, presents a significant challenge. While large language models (LLMs) demonstrate impressive proficiency in natural language processing, their performance in code generation tasks remains limited. In this paper, we introduce a new approach to code generation tasks leveraging multi-agent prompting that uniquely replicates the full cycle of program synthesis as observed in human developers. Our framework, MapCoder, consists of four LLM agents specifically designed to emulate the stages of this cycle: recalling relevant examples, planning, code generation, and debugging. After conducting thorough experiments, with multiple LLM ablations and analyses across eight challenging competitive problem-solving and program synthesis benchmarks, MapCoder showcases remarkable code generation capabilities, achieving new state-of-the-art results (pass@1) on HumanEval (93.9%), MBPP (83.1%), APPS (22.0%), CodeContests (28.5%), and xCodeEval (45.3%). Moreover, our method consistently delivers superior performance across various programming languages and varying problem difficulties. We open-source our framework at https://github.com/Md-Ashraful-Pramanik/MapCoder.


Automatic Programming: Large Language Models and Beyond

arXiv.org Artificial Intelligence

Automatic programming has seen increasing popularity due to the emergence of tools like GitHub Copilot which rely on Large Language Models (LLMs). At the same time, automatically generated code faces challenges during deployment due to concerns around quality and trust. In this article, we study automated coding in a general sense and study the concerns around code quality, security and related issues of programmer responsibility. These are key issues for organizations while deciding on the usage of automatically generated code. We discuss how advances in software engineering such as program repair and analysis can enable automatic programming. We conclude with a forward looking view, focusing on the programming environment of the near future, where programmers may need to switch to different roles to fully utilize the power of automatic programming. Automated repair of automatically generated programs from LLMs, can help produce higher assurance code from LLMs, along with evidence of assurance


CodeGRAG: Extracting Composed Syntax Graphs for Retrieval Augmented Cross-Lingual Code Generation

arXiv.org Artificial Intelligence

Utilizing large language models to generate codes has shown promising meaning in software development revolution. Despite the intelligence shown by the general large language models, their specificity in code generation can still be improved due to the syntactic gap and mismatched vocabulary existing among natural language and different programming languages. In addition, programming languages are inherently logical and complex, making them hard to be correctly generated. Existing methods rely on multiple prompts to the large language model to explore better solutions, which is expensive. In this paper, we propose Syntax Graph Retrieval Augmented Code Generation (CodeGRAG) to enhance the performance of LLMs in single-round code generation tasks. CodeGRAG extracts and summarizes the control flow and data flow of code blocks to fill the gap between programming languages and natural language. The extracted external structural knowledge models the inherent flows of code blocks, which can facilitate LLMs for better understanding of code syntax and serve as a bridge among different programming languages. CodeGRAG significantly improves the code generation ability of LLMs and can even offer performance gain for cross-lingual code generation, e.g., C++ for Python.


Quality Assessment of Prompts Used in Code Generation

arXiv.org Artificial Intelligence

Large Language Models (LLMs) are gaining popularity among software engineers. A crucial aspect of developing effective code-generation LLMs is to evaluate these models using a robust benchmark. Evaluation benchmarks with quality issues can provide a false sense of performance. In this work, we conduct the first-of-its-kind study of the quality of prompts within benchmarks used to compare the performance of different code generation models. To conduct this study, we analyzed 3,566 prompts from 9 code generation benchmarks to identify quality issues in them. We also investigated whether fixing the identified quality issues in the benchmarks' prompts affects a model's performance. We also studied memorization issues of the evaluation dataset, which can put into question a benchmark's trustworthiness. We found that code generation evaluation benchmarks mainly focused on Python and coding exercises and had very limited contextual dependencies to challenge the model. These datasets and the developers' prompts suffer from quality issues like spelling and grammatical errors, unclear sentences to express developers' intent, and not using proper documentation style. Fixing all these issues in the benchmarks can lead to a better performance for Python code generation, but not a significant improvement was observed for Java code generation. We also found evidence that GPT-3.5-Turbo and CodeGen-2.5 models possibly have data contamination issues.


CodeFort: Robust Training for Code Generation Models

arXiv.org Artificial Intelligence

Code generation models are not robust to small perturbations, which often lead to inconsistent and incorrect generations and significantly degrade the performance of these models. Improving the robustness of code generation models is crucial to better user experience when these models are deployed in real-world applications. However, existing efforts have not addressed this issue for code generation models. To fill this gap, we propose CodeFort, a framework to improve the robustness of code generation models, generalizing a large variety of code perturbations to enrich the training data and enabling various robust training strategies, mixing data augmentation, batch augmentation, adversarial logits pairing, and contrastive learning, all carefully designed to support high-throughput training. Extensive evaluations show that we improve the average robust pass rates of baseline CodeGen models from 14.79 to 21.74. Notably, the improvement in robustness against code-syntax perturbations is evidenced by a significant decrease in pass rate drop from 95.04% to 53.35%


Comments as Natural Logic Pivots: Improve Code Generation via Comment Perspective

arXiv.org Artificial Intelligence

Code generation aims to understand the problem description and generate corresponding code snippets, where existing works generally decompose such complex tasks into intermediate steps by prompting strategies, such as Chain-of-Thought and its variants. While these studies have achieved some success, their effectiveness is highly dependent on the capabilities of advanced Large Language Models (LLMs) such as GPT-4, particularly in terms of API calls, which significantly limits their practical applicability. Consequently, how to enhance the code generation capabilities of small and medium-scale code LLMs without significantly increasing training costs is an appealing challenge. In this paper, we suggest that code comments are the natural logic pivot between natural language and code language and propose using comments to boost the code generation ability of code LLMs. Concretely, we propose MANGO (comMents As Natural loGic pivOts), including a comment contrastive training strategy and a corresponding logical comment decoding strategy. Experiments are performed on HumanEval and MBPP, utilizing StarCoder and WizardCoder as backbone models, and encompassing model parameter sizes between 3B and 7B. The results indicate that MANGO significantly improves the code pass rate based on the strong baselines. Meanwhile, the robustness of the logical comment decoding strategy is notably higher than the Chain-of-thoughts prompting. The code is publicly available at \url{https://github.com/pppa2019/Mango}.


CYCLE: Learning to Self-Refine the Code Generation

arXiv.org Artificial Intelligence

Pre-trained code language models have achieved promising performance in code generation and improved the programming efficiency of human developers. However, their self-refinement capability is typically overlooked by the existing evaluations of code LMs, which focus only on the accuracy of the one-time prediction. For the cases when code LMs fail to implement the correct program, developers actually find it hard to debug and fix the faulty prediction since it is not written by the developers themselves. Unfortunately, our study reveals that code LMs cannot efficiently self-refine their faulty generations as well. In this paper, we propose CYCLE framework, learning to self-refine the faulty generation according to the available feedback, such as the execution results reported by the test suites. We evaluate CYCLE on three popular code generation benchmarks, HumanEval, MBPP, and APPS. The results reveal that CYCLE successfully maintains, sometimes improves, the quality of one-time code generation, while significantly improving the self-refinement capability of code LMs. We implement four variants of CYCLE with varied numbers of parameters across 350M, 1B, 2B, and 3B, and the experiments show that CYCLE consistently boosts the code generation performance, by up to 63.5%, across benchmarks and varied model sizes. We also notice that CYCLE outperforms code LMs that have 3$\times$ more parameters in self-refinement.


Code Generation for Conic Model-Predictive Control on Microcontrollers with TinyMPC

arXiv.org Artificial Intelligence

Conic constraints appear in many important control applications like legged locomotion, robotic manipulation, and autonomous rocket landing. However, current solvers for conic optimization problems have relatively heavy computational demands in terms of both floating-point operations and memory footprint, making them impractical for use on small embedded devices. We extend TinyMPC, an open-source, high-speed solver targeting low-power embedded control applications, to handle second-order cone constraints. We also present code-generation software to enable deployment of TinyMPC on a variety of microcontrollers. We benchmark our generated code against state-of-the-art embedded QP and SOCP solvers, demonstrating a two-order-of-magnitude speed increase over ECOS while consuming less memory. Finally, we demonstrate TinyMPC's efficacy on the Crazyflie, a lightweight, resource-constrained quadrotor with fast dynamics. TinyMPC and its code-generation tools are publicly available at https://tinympc.org.