Automatic Programming
On Leakage of Code Generation Evaluation Datasets
Matton, Alexandre, Sherborne, Tom, Aumiller, Dennis, Tommasone, Elena, Alizadeh, Milad, He, Jingyi, Ma, Raymond, Voisin, Maxime, Gilsenan-McMahon, Ellen, Gallรฉ, Matthias
A second possibility is that contamination happens indirectly through the use Code generation has emerged as an important skill of synthetic data--a widespread paradigm used in for large language models to master. Measuring recent particular to increase code capabilities by generating progress in code generation has relied on few, additional code training tokens. Finally, we critical benchmarks to judge performance between argue that final model selection might have been model families and checkpoints. While many recent overly influenced by their performance on these sophisticated evaluation datasets have been datasets, overfitting to performance on these metrics proposed (Jain et al., 2024; Jimenez et al., 2024), over general-purpose code-oriented skills.
DocCGen: Document-based Controlled Code Generation
Pimparkhede, Sameer, Kammakomati, Mehant, Tamilselvam, Srikanth, Kumar, Prince, Kumar, Ashok Pon, Bhattacharyya, Pushpak
Recent developments show that Large Language Models (LLMs) produce state-of-the-art performance on natural language (NL) to code generation for resource-rich general-purpose languages like C++, Java, and Python. However, their practical usage for structured domain-specific languages (DSLs) such as YAML, JSON is limited due to domain-specific schema, grammar, and customizations generally unseen by LLMs during pre-training. Efforts have been made to mitigate this challenge via in-context learning through relevant examples or by fine-tuning. However, it suffers from problems, such as limited DSL samples and prompt sensitivity but enterprises maintain good documentation of the DSLs. Therefore, we propose DocCGen, a framework that can leverage such rich knowledge by breaking the NL-to-Code generation task for structured code languages into a two-step process. First, it detects the correct libraries using the library documentation that best matches the NL query. Then, it utilizes schema rules extracted from the documentation of these libraries to constrain the decoding. We evaluate our framework for two complex structured languages, Ansible YAML and Bash command, consisting of two settings: Out-of-domain (OOD) and In-domain (ID). Our extensive experiments show that DocCGen consistently improves different-sized language models across all six evaluation metrics, reducing syntactic and semantic errors in structured code. We plan to open-source the datasets and code to motivate research in constrained code generation.
CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
He, Xinyi, Zou, Jiaru, Lin, Yun, Zhou, Mengyu, Han, Shi, Yuan, Zejian, Zhang, Dongmei
Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.
Brevity is the soul of wit: Pruning long files for code generation
Singh, Aaditya K., Yang, Yu, Tirumala, Kushal, Elhoushi, Mostafa, Morcos, Ari S.
Data curation is commonly considered a "secret-sauce" for LLM training, with higher quality data usually leading to better LLM performance. Given the scale of internet-scraped corpora, data pruning has become a larger and larger focus. Specifically, many have shown that de-duplicating data, or sub-selecting higher quality data, can lead to efficiency or performance improvements. Generally, three types of methods are used to filter internetscale corpora: embedding-based, heuristic-based, and classifier-based. In this work, we contrast the former two in the domain of finetuning LLMs for code generation. We find that embedding-based methods are often confounded by length, and that a simple heuristic-- pruning long files--outperforms other methods in compute-limited regimes. Our method can yield up to a 2x efficiency benefit in training (while matching performance) or a 3.5% absolute performance improvement on HumanEval (while matching compute). However, we find that perplexity on held-out long files can increase, begging the question of whether optimizing data mixtures for common coding benchmarks (HumanEval, MBPP) actually best serves downstream use cases. Overall, we hope our work builds useful intuitions about code data (specifically, the low quality of extremely long code files) provides a compelling heuristic-based method for data pruning, and brings to light questions in how we evaluate code generation models.
CodeRAG-Bench: Can Retrieval Augment Code Generation?
Wang, Zora Zhiruo, Asai, Akari, Yu, Xinyan Velocity, Xu, Frank F., Xie, Yiqing, Neubig, Graham, Fried, Daniel
While language models (LMs) have proven remarkably adept at generating code, many programs are challenging for LMs to generate using their parametric knowledge alone. Providing external contexts such as library documentation can facilitate generating accurate and functional code. Despite the success of retrieval-augmented generation (RAG) in various text-oriented tasks, its potential for improving code generation remains under-explored. In this work, we conduct a systematic, large-scale analysis by asking: in what scenarios can retrieval benefit code generation models? and what challenges remain? We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks, including basic programming, open-domain, and repository-level problems. We aggregate documents from five sources for models to retrieve contexts: competition solutions, online tutorials, library documentation, StackOverflow posts, and GitHub repositories. We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources. While notable gains are made in final code generation by retrieving high-quality contexts across various settings, our analysis reveals room for improvement -- current retrievers still struggle to fetch useful contexts especially with limited lexical overlap, and generators fail to improve with limited context lengths or abilities to integrate additional contexts. We hope CodeRAG-Bench serves as an effective testbed to encourage further development of advanced code-oriented RAG methods.
Toward Exploring the Code Understanding Capabilities of Pre-trained Code Generation Models
Lin, Jiayi, Xie, Yutao, Yu, Yue, Yang, Yibiao, Zhang, Lei
Recently, large code generation models trained in a self-supervised manner on extensive unlabeled programming language data have achieved remarkable success. While these models acquire vast amounts of code knowledge, they perform poorly on code understanding tasks, such as code search and clone detection, as they are specifically trained for generation. Pre-training a larger encoder-only architecture model from scratch on massive code data can improve understanding performance. However, this approach is costly and time-consuming, making it suboptimal. In this paper, we pioneer the transfer of knowledge from pre-trained code generation models to code understanding tasks, significantly reducing training costs. We examine effective strategies for enabling decoder-only models to acquire robust code representations. Furthermore, we introduce CL4D, a contrastive learning method designed to enhance the representation capabilities of decoder-only models. Comprehensive experiments demonstrate that our approach achieves state-of-the-art performance in understanding tasks such as code search and clone detection. Our analysis shows that our method effectively reduces the distance between semantically identical samples in the representation space. These findings suggest the potential for unifying code understanding and generation tasks using a decoder-only structured model.
ChartMimic: Evaluating LMM's Cross-Modal Reasoning Capability via Chart-to-Code Generation
Shi, Chufan, Yang, Cheng, Liu, Yaxin, Shui, Bo, Wang, Junjie, Jing, Mohan, Xu, Linran, Zhu, Xinyu, Li, Siheng, Zhang, Yuxiang, Liu, Gongye, Nie, Xiaomei, Cai, Deng, Yang, Yujiu
We introduce a new benchmark, ChartMimic, aimed at assessing the visually-grounded code generation capabilities of large multimodal models (LMMs). ChartMimic utilizes information-intensive visual charts and textual instructions as inputs, requiring LMMs to generate the corresponding code for chart rendering. ChartMimic includes 1,000 human-curated (figure, instruction, code) triplets, which represent the authentic chart use cases found in scientific papers across various domains(e.g., Physics, Computer Science, Economics, etc). These charts span 18 regular types and 4 advanced types, diversifying into 191 subcategories. Furthermore, we propose multi-level evaluation metrics to provide an automatic and thorough assessment of the output code and the rendered charts. Unlike existing code generation benchmarks, ChartMimic places emphasis on evaluating LMMs' capacity to harmonize a blend of cognitive capabilities, encompassing visual understanding, code generation, and cross-modal reasoning. The evaluation of 3 proprietary models and 11 open-weight models highlights the substantial challenges posed by ChartMimic. Even the advanced GPT-4V, Claude-3-opus only achieve an average score of 73.2 and 53.7, respectively, indicating significant room for improvement. We anticipate that ChartMimic will inspire the development of LMMs, advancing the pursuit of artificial general intelligence.
Test-Driven Development for Code Generation
Mathews, Noble Saji, Nagappan, Meiyappan
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation
Vijayaraghavan, Prashanth, Shi, Luyao, Ambrogio, Stefano, Mackin, Charles, Nitsure, Apoorva, Beymer, David, Degan, Ehsan
With the unprecedented advancements in Large Language Models (LLMs), their application domains have expanded to include code generation tasks across various programming languages. While significant progress has been made in enhancing LLMs for popular programming languages, there exists a notable gap in comprehensive evaluation frameworks tailored for Hardware Description Languages (HDLs), particularly VHDL. This paper addresses this gap by introducing a comprehensive evaluation framework designed specifically for assessing LLM performance in VHDL code generation task. We construct a dataset for evaluating LLMs on VHDL code generation task. This dataset is constructed by translating a collection of Verilog evaluation problems to VHDL and aggregating publicly available VHDL problems, resulting in a total of 202 problems. To assess the functional correctness of the generated VHDL code, we utilize a curated set of self-verifying testbenches specifically designed for those aggregated VHDL problem set. We conduct an initial evaluation of different LLMs and their variants, including zero-shot code generation, in-context learning (ICL), and Parameter-efficient fine-tuning (PEFT) methods. Our findings underscore the considerable challenges faced by existing LLMs in VHDL code generation, revealing significant scope for improvement. This study emphasizes the necessity of supervised fine-tuning code generation models specifically for VHDL, offering potential benefits to VHDL designers seeking efficient code generation solutions.
Enhancing Repository-Level Code Generation with Integrated Contextual Information
Pan, Zhiyuan, Hu, Xing, Xia, Xin, Yang, Xiaohu
Large language models (LLMs) have demonstrated remarkable capabilities in code generation tasks. However, repository-level code generation presents unique challenges, particularly due to the need to utilize information spread across multiple files within a repository. Existing retrieval-based approaches sometimes fall short as they are limited in obtaining a broader and deeper repository context. In this paper, we present CatCoder, a novel code generation framework designed for statically typed programming languages. CatCoder enhances repository-level code generation by integrating relevant code and type context. Specifically, it leverages static analyzers to extract type dependencies and merges this information with retrieved code to create comprehensive prompts for LLMs. To evaluate the effectiveness of CatCoder, we adapt and construct benchmarks that include 199 Java tasks and 90 Rust tasks. The results show that CatCoder outperforms the RepoCoder baseline by up to 17.35%, in terms of pass@k score. Furthermore, the generalizability of CatCoder is assessed using various LLMs, including both code-specialized models and general-purpose models. Our findings indicate consistent performance improvements across all models, which underlines the practicality of CatCoder.