Clustering
Agnostic Classification of Markovian Sequences
El-Yaniv, Ran, Fine, Shai, Tishby, Naftali
Classification of finite sequences without explicit knowledge of their statistical nature is a fundamental problem with many important applications. We propose a new information theoretic approach to this problem which is based on the following ingredients: (i) sequences aresimilar when they are likely to be generated by the same source; (ii) cross entropies can be estimated via "universal compression"; (iii)Markovian sequences can be asymptotically-optimally merged. With these ingredients we design a method for the classification of discrete sequences whenever they can be compressed. We introduce the method and illustrate its application for hierarchical clustering of languages and for estimating similarities of protein sequences.
Agnostic Classification of Markovian Sequences
El-Yaniv, Ran, Fine, Shai, Tishby, Naftali
Classification of finite sequences without explicit knowledge of their statistical nature is a fundamental problem with many important applications. We propose a new information theoretic approach to this problem which is based on the following ingredients: (i) sequences are similar when they are likely to be generated by the same source; (ii) cross entropies can be estimated via "universal compression"; (iii) Markovian sequences can be asymptotically-optimally merged. With these ingredients we design a method for the classification of discrete sequences whenever they can be compressed. We introduce the method and illustrate its application for hierarchical clustering of languages and for estimating similarities of protein sequences.
Active Data Clustering
Hofmann, Thomas, Buhmann, Joachim M.
Active data clustering is a novel technique for clustering of proximity data which utilizes principles from sequential experiment design in order to interleave data generation and data analysis. The proposed active data sampling strategy is based on the expected value of information, a concept rooting in statistical decision theory. This is considered to be an important step towards the analysis of largescale data sets, because it offers a way to overcome the inherent data sparseness of proximity data.
Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling
SaM can be said to do clustering/vector quantization (VQ) and at the same time to preserve the spatial ordering of the input data reflected by an ordering of the code book vectors (cluster centroids) in a one or two dimensional output space, where the latter property is closely related to multidimensional scaling (MDS) in statistics. Although the level of activity and research around the SaM algorithm is quite large (a recent overview by [Kohonen 95] contains more than 1000 citations), only little comparison among the numerous existing variants of the basic approach and also to more traditional statistical techniques of the larger frameworks of VQ and MDS is available. Additionally, thereis only little advice in the literature about how to properly use 446 A.Flexer SOM in order to get optimal results in terms of either vector quantization (VQ) or multidimensional scaling or maybe even both of them. To make the notion of SOM being a tool for "data visualization" more precise, the following question has to be answered: Should SOM be used for doing VQ, MDS, both at the same time or none of them? Two recent comprehensive studies comparing SOM either to traditional VQ or MDS techniques separately seem to indicate that SOM is not competitive when used for either VQ or MDS: [Balakrishnan et al. 94J compare SOM to K-means clustering on 108 multivariate normal clustering problems with known clustering solutions and show that SOM performs significantly worse in terms of data points misclassified
Limitations of Self-organizing Maps for Vector Quantization and Multidimensional Scaling
SaM can be said to do clustering/vector quantization (VQ) and at the same time to preserve the spatial ordering of the input data reflected by an ordering of the code book vectors (cluster centroids) in a one or two dimensional output space, where the latter property is closely related to multidimensional scaling (MDS) in statistics. Although the level of activity and research around the SaM algorithm is quite large (a recent overview by [Kohonen 95] contains more than 1000 citations), only little comparison among the numerous existing variants of the basic approach and also to more traditional statistical techniques of the larger frameworks of VQ and MDS is available. Additionally, there is only little advice in the literature about how to properly use 446 A. Flexer SOM in order to get optimal results in terms of either vector quantization (VQ) or multidimensional scaling or maybe even both of them. To make the notion of SOM being a tool for "data visualization" more precise, the following question has to be answered: Should SOM be used for doing VQ, MDS, both at the same time or none of them? Two recent comprehensive studies comparing SOM either to traditional VQ or MDS techniques separately seem to indicate that SOM is not competitive when used for either VQ or MDS: [Balakrishnan et al. 94J compare SOM to K-means clustering on 108 multivariate normal clustering problems with known clustering solutions and show that SOM performs significantly worse in terms of data points misclassified
Clustering data through an analogy to the Potts model
Blatt, Marcelo, Wiseman, Shai, Domany, Eytan
A new approach for clustering is proposed. This method is based on an analogy to a physical model; the ferromagnetic Potts model at thermal equilibrium is used as an analog computer for this hard optimization problem. We do not assume any structure of the underlying distributionof the data. Phase space of the Potts model is divided into three regions; ferromagnetic, super-paramagnetic and paramagnetic phases. The region of interest is that corresponding to the super-paramagnetic one, where domains of aligned spins appear.
Clustering data through an analogy to the Potts model
Blatt, Marcelo, Wiseman, Shai, Domany, Eytan
A new approach for clustering is proposed. This method is based on an analogy to a physical model; the ferromagnetic Potts model at thermal equilibrium is used as an analog computer for this hard optimization problem. We do not assume any structure of the underlying distribution of the data. Phase space of the Potts model is divided into three regions; ferromagnetic, super-paramagnetic and paramagnetic phases. The region of interest is that corresponding to the super-paramagnetic one, where domains of aligned spins appear.
Learning the Structure of Similarity
The additive clustering (ADCL US) model (Shepard & Arabie, 1979) treats the similarity of two stimuli as a weighted additive measure of their common features. Inspired by recent work in unsupervised learning with multiple cause models, we propose anew, statistically well-motivated algorithm for discovering the structure of natural stimulus classes using the ADCLUS model, which promises substantial gains in conceptual simplicity, practical efficiency, and solution quality over earlier efforts.
Learning the Structure of Similarity
The additive clustering (ADCL US) model (Shepard & Arabie, 1979) treats the similarity of two stimuli as a weighted additive measure of their common features. Inspired by recent work in unsupervised learning with multiple cause models, we propose anew, statistically well-motivated algorithm for discovering the structure of natural stimulus classes using the ADCLUS model, which promises substantial gainsin conceptual simplicity, practical efficiency, and solution quality over earlier efforts.
Iterative Optimization and Simplification of Hierarchical Clusterings
Clustering is often used for discovering structure in data. Clustering systems differ in the objective function used to evaluate clustering quality and the control strategy used to search the space of clusterings. Ideally, the search strategy should consistently construct clusterings of high quality, but be computationally inexpensive as well. In general, we cannot have it both ways, but we can partition the search so that a system inexpensively constructs a `tentative' clustering for initial examination, followed by iterative optimization, which continues to search in background for improved clusterings. Given this motivation, we evaluate an inexpensive strategy for creating initial clusterings, coupled with several control strategies for iterative optimization, each of which repeatedly modifies an initial clustering in search of a better one. One of these methods appears novel as an iterative optimization strategy in clustering contexts. Once a clustering has been constructed it is judged by analysts -- often according to task-specific criteria. Several authors have abstracted these criteria and posited a generic performance task akin to pattern completion, where the error rate over completed patterns is used to `externally' judge clustering utility. Given this performance task, we adapt resampling-based pruning strategies used by supervised learning systems to the task of simplifying hierarchical clusterings, thus promising to ease post-clustering analysis. Finally, we propose a number of objective functions, based on attribute-selection measures for decision-tree induction, that might perform well on the error rate and simplicity dimensions.