Reinforcement Learning
A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning with General Function Approximation
The exploration-exploitation dilemma has been a central challenge in reinforcement learning (RL) with complex model classes. In this paper, we propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for RL with general function approximation. Our key algorithmic design includes (1) a general deterministic policy-switching strategy that achieves low switching cost, (2) a monotonic value function structure with carefully controlled function class complexity, and (3) a variance-weighted regression scheme that exploits historical trajectories with high data efficiency. MQL-UCB achieves minimax optimal regret of ร(d HK) when K is sufficiently large and near-optimal policy switching cost of ร(dH), with d being the eluder dimension of the function class, H being the planning horizon, and K being the number of episodes.
Deterministic Policies for Constrained Reinforcement Learning in Polynomial Time
We present a novel algorithm that efficiently computes near-optimal deterministic policies for constrained reinforcement learning (CRL) problems. Our approach combines three key ideas: (1) value-demand augmentation, (2) action-space approximate dynamic programming, and (3) time-space rounding. Our algorithm constitutes a fully polynomial-time approximation scheme (FPTAS) for any timespace recursive (TSR) cost criteria. A TSR criteria requires the cost of a policy to be computable recursively over both time and (state) space, which includes classical expectation, almost sure, and anytime constraints. Our work answers three open questions spanning two long-standing lines of research: polynomial-time approximability is possible for 1) anytime-constrained policies, 2) almost-sure-constrained policies, and 3) deterministic expectation-constrained policies.
AuctionNet: A Novel Benchmark for Decision-Making in Large-Scale Games
Decision-making in large-scale games is an essential research area in artificial intelligence (AI) with significant real-world impact. However, the limited access to realistic large-scale game environments has hindered research progress in this area. In this paper, we present AuctionNet, a benchmark for bid decision-making in largescale ad auctions derived from a real-world online advertising platform. AuctionNet is composed of three parts: an ad auction environment, a pre-generated dataset based on the environment, and performance evaluations of several baseline bid decision-making algorithms. More specifically, the environment effectively replicates the integrity and complexity of real-world ad auctions through the interaction of several modules: the ad opportunity generation module employs deep generative networks to bridge the gap between simulated and real-world data while mitigating the risk of sensitive data exposure; the bidding module implements diverse autobidding agents trained with different decision-making algorithms; and the auction module is anchored in the classic Generalized Second Price (GSP) auction but also allows for customization of auction mechanisms as needed.
Offline Reinforcement Learning with OOD State Correction and OOD Action Suppression 1, Chen
In offline reinforcement learning (RL), addressing the out-of-distribution (OOD) action issue has been a focus, but we argue that there exists an OOD state issue that also impairs performance yet has been underexplored. Such an issue describes the scenario when the agent encounters states out of the offline dataset during the test phase, leading to uncontrolled behavior and performance degradation. To this end, we propose SCAS, a simple yet effective approach that unifies OOD state correction and OOD action suppression in offline RL. Technically, SCAS achieves value-aware OOD state correction, capable of correcting the agent from OOD states to high-value in-distribution states. Theoretical and empirical results show that SCAS also exhibits the effect of suppressing OOD actions. On standard offline RL benchmarks, SCAS achieves excellent performance without additional hyperparameter tuning. Moreover, benefiting from its OOD state correction feature, SCAS demonstrates enhanced robustness against environmental perturbations.
Learning from Trajectories via Subgoal Discovery
Sujoy Paul, Jeroen Vanbaar, Amit Roy-Chowdhury
Learning to solve complex goal-oriented tasks with sparse terminal-only rewards often requires an enormous number of samples. In such cases, using a set of expert trajectories could help to learn faster. However, Imitation Learning (IL) via supervised pre-training with these trajectories may not perform as well and generally requires additional finetuning with expert-in-the-loop. In this paper, we propose an approach which uses the expert trajectories and learns to decompose the complex main task into smaller sub-goals. We learn a function which partitions the state-space into sub-goals, which can then be used to design an extrinsic reward function. We follow a strategy where the agent first learns from the trajectories using IL and then switches to Reinforcement Learning (RL) using the identified sub-goals, to alleviate the errors in the IL step. To deal with states which are underrepresented by the trajectory set, we also learn a function to modulate the sub-goal predictions. We show that our method is able to solve complex goal-oriented tasks, which other RL, IL or their combinations in literature are not able to solve.
Understanding Model Selection for Learning in Strategic Environments
The deployment of ever-larger machine learning models reflects a growing consensus that the more expressive the model class one optimizes over--and the more data one has access to--the more one can improve performance. As models get deployed in a variety of real-world scenarios, they inevitably face strategic environments. In this work, we consider the natural question of how the interplay of models and strategic interactions affects the relationship between performance at equilibrium and the expressivity of model classes. We find that strategic interactions can break the conventional view--meaning that performance does not necessarily monotonically improve as model classes get larger or more expressive (even with infinite data). We show the implications of this result in several contexts including strategic regression, strategic classification, and multi-agent reinforcement learning. In particular, we show that each of these settings admits a Braess' paradox-like phenomenon in which optimizing over less expressive model classes allows one to achieve strictly better equilibrium outcomes. Motivated by these examples, we then propose a new paradigm for model selection in games wherein an agent seeks to choose amongst different model classes to use as their action set in a game.
Spectral-Risk Safe Reinforcement Learning with Convergence Guarantees 1 1
The field of risk-constrained reinforcement learning (RCRL) has been developed to effectively reduce the likelihood of worst-case scenarios by explicitly handling risk-measure-based constraints. However, the nonlinearity of risk measures makes it challenging to achieve convergence and optimality. To overcome the difficulties posed by the nonlinearity, we propose a spectral risk measureconstrained RL algorithm, spectral-risk-constrained policy optimization (SRCPO), a bilevel optimization approach that utilizes the duality of spectral risk measures. In the bilevel optimization structure, the outer problem involves optimizing dual variables derived from the risk measures, while the inner problem involves finding an optimal policy given these dual variables. The proposed method, to the best of our knowledge, is the first to guarantee convergence to an optimum in the tabular setting. Furthermore, the proposed method has been evaluated on continuous control tasks and showed the best performance among other RCRL algorithms satisfying the constraints.
QGym: Scalable Simulation and Benchmarking of Queuing Network Controllers Ang Li
Queuing network control determines the allocation of scarce resources to manage congestion, a fundamental problem in manufacturing, communications, and healthcare. Compared to standard RL problems, queueing problems are distinguished by unique challenges: i) a system operating in continuous time, ii) high stochasticity, and iii) long horizons over which the system can become unstable (exploding delays). To spur methodological progress tackling these challenges, we present an open-sourced queueing simulation framework, QGym, that benchmark queueing policies across realistic problem instances. Our modular framework allows the researchers to build on our initial instances, which provide a wide range of environments including parallel servers, criss-cross, tandem, and re-entrant networks, as well as a realistically calibrated hospital queuing system. QGym makes it easy to compare multiple policies, including both model-free RL methods and classical queuing policies. Our testbed complements the traditional focus on evaluating algorithms based on mathematical guarantees in idealized settings, and significantly expands the scope of empirical benchmarking in prior work.
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-Balancing Shaped Rewards
Alexander Trott, Stephan Zheng, Caiming Xiong, Richard Socher
While using shaped rewards can be beneficial when solving sparse reward tasks, their successful application often requires careful engineering and is problem specific. For instance, in tasks where the agent must achieve some goal state, simple distance-to-goal reward shaping often fails, as it renders learning vulnerable to local optima. We introduce a simple and effective model-free method to learn from shaped distance-to-goal rewards on tasks where success depends on reaching a goal state. Our method introduces an auxiliary distance-based reward based on pairs of rollouts to encourage diverse exploration. This approach effectively prevents learning dynamics from stabilizing around local optima induced by the naive distance-to-goal reward shaping and enables policies to efficiently solve sparse reward tasks. Our augmented objective does not require any additional reward engineering or domain expertise to implement and converges to the original sparse objective as the agent learns to solve the task. We demonstrate that our method successfully solves a variety of hard-exploration tasks (including maze navigation and 3D construction in a Minecraft environment), where naive distancebased reward shaping otherwise fails, and intrinsic curiosity and reward relabeling strategies exhibit poor performance.
Imitating Language via Scalable Inverse Reinforcement Learning
The majority of language model training builds on imitation learning. It covers pretraining, supervised fine-tuning, and affects the starting conditions for reinforcement learning from human feedback (RLHF). The simplicity and scalability of maximum likelihood estimation (MLE) for next token prediction led to its role as predominant paradigm. However, the broader field of imitation learning can more effectively utilize the sequential structure underlying autoregressive generation. We focus on investigating the inverse reinforcement learning (IRL) perspective to imitation, extracting rewards and directly optimizing sequences instead of individual token likelihoods and evaluate its benefits for fine-tuning large language models. We provide a new angle, reformulating inverse soft-Q-learning as a temporal difference regularized extension of MLE. This creates a principled connection between MLE and IRL and allows trading off added complexity with increased performance and diversity of generations in the supervised fine-tuning (SFT) setting. We find clear advantages for IRL-based imitation, in particular for retaining diversity while maximizing task performance, rendering IRL a strong alternative on fixed SFT datasets even without online data generation. Our analysis of IRL-extracted reward functions further indicates benefits for more robust reward functions via tighter integration of supervised and preference-based LLM post-training.