Reinforcement Learning: Instructional Materials


Advanced AI: Deep Reinforcement Learning in Python

#artificialintelligence

What you will learn in this course? In this course, you'll work with more complex environments, specifically provided by the OpenAI Gym: CartPole Mountain Car Atari games to train effective learning agents so you'll need new techniques. We've seen that reinforcement learning is an entirely different kind of machine learning than supervised and unsupervised learning.Supervised and unsupervised machine learning algorithms are for making predictions about data and analyzing, while reinforcement learning is about training an agent to interact with an environment and maximize its reward. Deep reinforcement learning and AI has a lot of potentials also carries huge risk. One main principle of training reinforcement learning agents is that there are unintended consequences when training an AI.



Reinforcement Learning Series Intro - Syllabus Overview

#artificialintelligence

Welcome to this series on reinforcement learning! We'll first start out by introducing the absolute basics to build a solid ground for us to run. We'll then progress onto more advanced and sophisticated topics that integrate artificial neural networks and deep learning into reinforcement learning. We'll also be getting our hands dirty by implementing some super cool reinforcement learning projects in code! Without further ado, let's get to it!


Ensemble Machine Learning in Python: Random Forest, AdaBoost

#artificialintelligence

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


Data Science: Supervised Machine Learning in Python

#artificialintelligence

In recent years, we've seen a resurgence in AI, or artificial intelligence, and machine learning. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts. Google's AlphaGo program was able to beat a world champion in the strategy game go using deep reinforcement learning. Machine learning is even being used to program self driving cars, which is going to change the automotive industry forever. Imagine a world with drastically reduced car accidents, simply by removing the element of human error.


Artificial Intelligence: Reinforcement Learning in Python

#artificialintelligence

When people talk about artificial intelligence, they usually don't mean supervised and unsupervised machine learning. These tasks are pretty trivial compared to what we think of AIs doing - playing chess and Go, driving cars, and beating video games at a superhuman level. Reinforcement learning has recently become popular for doing all of that and more. Much like deep learning, a lot of the theory was discovered in the 70s and 80s but it hasn't been until recently that we've been able to observe first hand the amazing results that are possible. In 2016 we saw Google's AlphaGo beat the world Champion in Go.


Advanced AI: Deep Reinforcement Learning in Python

#artificialintelligence

This course is all about the application of deep learning and neural networks to reinforcement learning. If you've taken my first reinforcement learning class, then you know that reinforcement learning is on the bleeding edge of what we can do with AI. Specifically, the combination of deep learning with reinforcement learning has led to AlphaGo beating a world champion in the strategy game Go, it has led to self-driving cars, and it has led to machines that can play video games at a superhuman level. Reinforcement learning has been around since the 70s but none of this has been possible until now.



Reinforcement Learning from scratch – Insight Data

#artificialintelligence

Recently, I gave a talk at the O'Reilly AI conference in Beijing about some of the interesting lessons we've learned in the world of NLP. While there, I was lucky enough to attend a tutorial on Deep Reinforcement Learning (Deep RL) from scratch by Unity Technologies. I thought that the session, led by Arthur Juliani, was extremely informative and wanted to share some big takeaways below. In our conversations with companies, we've seen a rise of interesting Deep RL applications, tools and results. In parallel, the inner workings and applications of Deep RL, such as AlphaGo pictured above, can often seem esoteric and hard to understand.


Top 5 Reinforcement Learning Books

#artificialintelligence

Reinforcement Learning - over the last decade we have seen a lot of progress in use of reinforcement learning algorithms in settings when labeled data doesn't exist and a supverisde learning approach is not possible. The state of the art approach to tackling RL problems are Policy Gradients, which in combination with Monte Carlo Tree Search were employed by Google DeepMind's AlphaGo system to famously beat the Go world champion Lee Sedol. The readers will love our list because it is Data-Driven & Objective. Artificial Intelligence: A Modern Approach, 3e offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. Number one in its field, this textbook is ideal for one or two-semester, undergraduate or graduate-level courses in Artificial Intelligence.