Reinforcement Learning
Bowen Li1 Zhaoyu Li2 Jinqi Luo
Recent years have witnessed the rapid development of Neuro-Symbolic (NeSy) AI systems, which integrate symbolic reasoning into deep neural networks. However, most of the existing benchmarks for NeSy AI fail to provide long-horizon reasoning tasks with complex multi-agent interactions. Furthermore, they are usually constrained by fixed and simplistic logical rules over limited entities, making them far from real-world complexities. To address these crucial gaps, we introduce LogiCity, the first simulator based on customizable first-order logic (FOL) for an urban-like environment with multiple dynamic agents.
No Representation, No Trust: Connecting Representation, Collapse, and Trust Issues in PPO
Reinforcement learning (RL) is inherently rife with non-stationarity since the states and rewards the agent observes during training depend on its changing policy. Therefore, networks in deep RL must be capable of adapting to new observations and fitting new targets. However, previous works have observed that networks trained under non-stationarity exhibit an inability to continue learning, termed loss of plasticity, and eventually a collapse in performance. For off-policy deep value-based RL methods, this phenomenon has been correlated with a decrease in representation rank and the ability to fit random targets, termed capacity loss. Although this correlation has generally been attributed to neural network learning under non-stationarity, the connection to representation dynamics has not been carefully studied in on-policy policy optimization methods. In this work, we empirically study representation dynamics in Proximal Policy Optimization (PPO) on the Atari and MuJoCo environments, revealing that PPO agents are also affected by feature rank deterioration and capacity loss. We show that this is aggravated by stronger non-stationarity, ultimately driving the actor's performance to collapse, regardless of the performance of the critic. We ask why the trust region, specific to methods like PPO, cannot alleviate or prevent the collapse and find a connection between representation collapse and the degradation of the trust region, one exacerbating the other. Finally, we present Proximal Feature Optimization (PFO), a novel auxiliary loss that, along with other interventions, shows that regularizing the representation dynamics mitigates the performance collapse of PPO agents.
Learning to Share in Multi-Agent Reinforcement Learning
In this paper, we study the problem of networked multi-agent reinforcement learning (MARL), where a number of agents are deployed as a partially connected network and each interacts only with nearby agents. Networked MARL requires all agents to make decisions in a decentralized manner to optimize a global objective with restricted communication between neighbors over the network. Inspired by the fact that sharing plays a key role in human's learning of cooperation, we propose LToS, a hierarchically decentralized MARL framework that enables agents to learn to dynamically share reward with neighbors so as to encourage agents to cooperate on the global objective through collectives. For each agent, the high-level policy learns how to share reward with neighbors to decompose the global objective, while the low-level policy learns to optimize the local objective induced by the high-level policies in the neighborhood. The two policies form a bi-level optimization and learn alternately. We empirically demonstrate that LToS outperforms existing methods in both social dilemma and networked MARL scenarios across scales.
Solving Zero-Sum Markov Games with Continuous State via Spectral Dynamic Embedding
In this paper, we propose a provably efficient natural policy gradient algorithm called Spectral Dynamic Embedding Policy Optimization (SDEPO) for two-player zero-sum stochastic Markov games with continuous state space and finite action space. In the policy evaluation procedure of our algorithm, a novel kernel embedding method is employed to construct a finite-dimensional linear approximations to the state-action value function.
GriddlyJS: A Web IDE for Reinforcement Learning
Progress in reinforcement learning (RL) research is often driven by the design of new, challenging environments--a costly undertaking requiring skills orthogonal to that of a typical machine learning researcher. The complexity of environment development has only increased with the rise of procedural-content generation (PCG) as the prevailing paradigm for producing varied environments capable of testing the robustness and generalization of RL agents. Moreover, existing environments often require complex build processes, making reproducing results difficult. To address these issues, we introduce GriddlyJS, a web-based Integrated Development Environment (IDE) based on the Griddly engine. GriddlyJS allows researchers to visually design and debug arbitrary, complex PCG grid-world environments using a convenient graphical interface, as well as visualize, evaluate, and record the performance of trained agent models. By connecting the RL workflow to the advanced functionality enabled by modern web standards, GriddlyJS allows publishing interactive agent-environment demos that reproduce experimental results directly to the web. To demonstrate the versatility of GriddlyJS, we use it to quickly develop a complex compositional puzzle-solving environment alongside arbitrary human-designed environment configurations and their solutions for use in automatic curriculum learning and offline RL. The GriddlyJS IDE is open source and freely available at https://griddly.ai.
EcoLight: Intersection Control in Developing Regions Under Extreme Budget and Network Constraints
Effective intersection control can play an important role in reducing traffic congestion and associated vehicular emissions. This is vitally needed in developing countries, where air pollution is reaching life threatening levels. This paper presents EcoLight intersection control for developing regions, where budget is constrained and network connectivity is very poor. EcoLight learns effective control offline using state-of-the-art Deep Reinforcement Learning methods, but deploys highly efficient runtime control algorithms on low cost embedded devices that work standalone on road without server connectivity. EcoLight optimizes both average case and worst case values of throughput, travel time and other metrics, as evaluated on open-source datasets from New York and on a custom developing region dataset.
Policy Aggregation
We consider the challenge of AI value alignment with multiple individuals that have different reward functions and optimal policies in an underlying Markov decision process. We formalize this problem as one of policy aggregation, where the goal is to identify a desirable collective policy. We argue that an approach informed by social choice theory is especially suitable. Our key insight is that social choice methods can be reinterpreted by identifying ordinal preferences with volumes of subsets of the state-action occupancy polytope. Building on this insight, we demonstrate that a variety of methods -- including approval voting, Borda count, the proportional veto core, and quantile fairness -- can be practically applied to policy aggregation.
Trajectory-wise Multiple Choice Learning for Dynamics Generalization in Reinforcement Learning
Model-based reinforcement learning (RL) has shown great potential in various control tasks in terms of both sample-efficiency and final performance. However, learning a generalizable dynamics model robust to changes in dynamics remains a challenge since the target transition dynamics follow a multi-modal distribution. In this paper, we present a new model-based RL algorithm, coined trajectory-wise multiple choice learning, that learns a multi-headed dynamics model for dynamics generalization. The main idea is updating the most accurate prediction head to specialize each head in certain environments with similar dynamics, i.e., clustering environments. Moreover, we incorporate context learning, which encodes dynamicsspecific information from past experiences into the context latent vector, enabling the model to perform online adaptation to unseen environments. Finally, to utilize the specialized prediction heads more effectively, we propose an adaptive planning method, which selects the most accurate prediction head over a recent experience. Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods. Source code and videos are available at https://sites.google.com/view/trajectory-mcl.
iVideoGPT: Interactive VideoGPTs are Scalable World Models
World models empower model-based agents to interactively explore, reason, and plan within imagined environments for real-world decision-making. However, the high demand for interactivity poses challenges in harnessing recent advancements in video generative models for developing world models at scale. This work introduces Interactive VideoGPT (iVideoGPT), a scalable autoregressive transformer framework that integrates multimodal signals--visual observations, actions, and rewards--into a sequence of tokens, facilitating an interactive experience of agents via next-token prediction.