Goto

Collaborating Authors

Reinforcement Learning


The First AI4TSP Competition: Learning to Solve Stochastic Routing Problems

#artificialintelligence

The TSP is one of the classical combinatorial optimization problems, with many variants inspired by real-world applications. This first competition asked the participants to develop algorithms to solve a time-dependent orienteering problem with stochastic weights and time windows (TD-OPSWTW). It focused on two types of learning approaches: surrogate-based optimization and deep reinforcement learning. In this paper, we describe the problem, the setup of the competition, the winning methods, and give an overview of the results. The winning methods described in this work have advanced the state-of-the-art in using AI for stochastic routing problems. Overall, by organizing this competition we have introduced routing problems as an interesting problem setting for AI researchers.


Learning for Collaboration, Not Competition

Robohub

Jakob Foerster an accredited Machine Learning Research Scientist who has been at the forefront of research on Multi-Agent Learning speaks with interviewer Kegan Strawn. Dr. Foerster explains why incorporating uncertainty into multi-agent interactions is essential to creating robust algorithms that can operate not only in games but in real-world applications. Jakob Foerster Jakob Foerster is an Associate Professor at the University of Oxford. His papers have gained prestigious awards at top machine learning conferences (ICML, AAAI) and have helped push deep multi-agent reinforcement learning to the forefront of AI research. Jakob previously worked at Facebook AI Research and received his Ph.D. from the University of Oxford under the supervision of Shimon Whiteson.


david o. houwen on LinkedIn: #AI #artificialintelligence #machinelearning

#artificialintelligence

Impressive results were achieved in activities as diverse as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to solve difficult problems. They have learned to fly model helicopters and perform aerobatic manoeuvers such as loops and rolls. In some applications they have even become better than the best humans, such as in Atari, Go, poker and StarCraft. The way in which deep reinforcement learning explores complex environments reminds us of how children learn, by playfully trying out things, getting feedback, and trying again.


Artificial Intelligence Intermediate Level Interview Questions

#artificialintelligence

The environment is the setting that the agent is acting on and the agent represents the RL algorithm. To understand this better, let's suppose that our agent is learning to play counterstrike. The mathematical approach for mapping a solution in Reinforcement Learning is called Markov's Decision Process (MDP). To briefly sum it up, the agent must take an action (A) to transition from the start state to the end state (S). While doing so, the agent receives rewards (R) for each action he takes.


Reinforcement Learning: An Introduction

#artificialintelligence

In 9 hours, Google's AlphaZero went from only knowing the rules of chess to beating the best models in the world. Chess has been studied by humans for over 1000 years, yet a reinforcement learning model was able to further our knowledge of the game in a negligible amount of time, using no prior knowledge aside from the game rules. No other machine learning field allows for such progress in this problem. Today, similar models by Google are being used in a wide variety of fields like predicting and detecting early signs of life-changing illnesses, improving text-to-speech systems, and more. Machine learning can be divided into 3 main paradigms.


Reinforcement Learning: An Introduction

#artificialintelligence

In 9 hours, Google's AlphaZero went from only knowing the rules of chess to beating the best models in the world. Chess has been studied by humans for over 1000 years, yet a reinforcement learning model was able to further our knowledge of the game in a negligible amount of time, using no prior knowledge aside from the game rules. No other machine learning field allows for such progress in this problem. Today, similar models by Google are being used in a wide variety of fields like predicting and detecting early signs of life-changing illnesses, improving text-to-speech systems, and more. Machine learning can be divided into 3 main paradigms.


RLiable: towards reliable evaluation and reporting in reinforcement learning

AIHub

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville and Marc G. Bellemare won an outstanding paper award at NeurIPS2021 for their paper Deep Reinforcement Learning at the Edge of the Statistical Precipice. In this blog post, Rishabh Agarwal and Pablo Samuel Castro explain this work. Reinforcement learning (RL) is an area of machine learning that focuses on learning from experiences to solve decision making tasks. While the field of RL has made great progress, resulting in impressive empirical results on complex tasks, such as playing video games, flying stratospheric balloons and designing hardware chips, it is becoming increasingly apparent that the current standards for empirical evaluation might give a false sense of fast scientific progress while slowing it down. To that end, in "Deep RL at the Edge of the Statistical Precipice", given as an oral presentation at NeurIPS 2021, we discuss how statistical uncertainty of results needs to be considered, especially when using only a few training runs, in order for evaluation in deep RL to be reliable.


A Hybrid PAC Reinforcement Learning Algorithm for Human-Robot Interaction

#artificialintelligence

This paper offers a new hybrid probably approximately correct (PAC) reinforcement learning (RL) algorithm for Markov decision processes (MDPs) that intelligently maintains favorable features of both model-based and model-free methodologies. The designed algorithm, referred to as the Dyna-Delayed Q-learning (DDQ) algorithm, combines model-free Delayed Q-learning and model-based R-max algorithms while outperforming both in most cases. The paper includes a PAC analysis of the DDQ algorithm and a derivation of its sample complexity. Numerical results are provided to support the claim regarding the new algorithm's sample efficiency compared to its parents as well as the best-known PAC model-free and model-based algorithms in application. A real-world experimental implementation of DDQ in the context of pediatric motor rehabilitation facilitated by infant-robot interaction highlights the potential benefits of the reported method.


Artificial Intelligence: Reinforcement Learning in Python

#artificialintelligence

Udemy Coupon - Artificial Intelligence: Reinforcement Learning in Python Complete guide to Artificial Intelligence, prep for Deep Reinforcement Learning with Stock Trading Applications BESTSELLER 4.5 (5,676 ratings) Created by Lazy Programmer Inc.  English [Auto-generated], Portuguese [Auto-generated], 1 more Preview this Course - GET COUPON CODE 100% Off Udemy Coupon . Free Udemy Courses . Online Classes


Automated Reinforcement Learning (AutoRL): A Survey and Open Problems

#artificialintelligence

The combination of Reinforcement Learning (RL) with deep learning has led to a series of impressive feats, with many believing (deep) RL provides a path towards generally capable agents. However, the success of RL agents is often highly sensitive to design choices in the training process, which may require tedious and error-prone manual tuning. This makes it challenging to use RL for new problems, while also limits its full potential. In many other areas of machine learning, AutoML has shown it is possible to automate such design choices and has also yielded promising initial results when applied to RL. However, Automated Reinforcement Learning (AutoRL) involves not only standard applications of AutoML but also includes additional challenges unique to RL, that naturally produce a different set of methods.