Evolutionary Systems
Ask, Attend, Attack: An Effective Decision-Based Black-Box Targeted Attack for Image-to-Text Models, and Min Jiang
While image-to-text models have demonstrated significant advancements in various vision-language tasks, they remain susceptible to adversarial attacks. Existing white-box attacks on image-to-text models require access to the architecture, gradients, and parameters of the target model, resulting in low practicality. Although the recently proposed gray-box attacks have improved practicality, they suffer from semantic loss during the training process, which limits their targeted attack performance. To advance adversarial attacks of image-to-text models, this paper focuses on a challenging scenario: decision-based black-box targeted attacks where the attackers only have access to the final output text and aim to perform targeted attacks. Specifically, we formulate the decision-based black-box targeted attack as a large-scale optimization problem.
MONO2REST: Identifying and Exposing Microservices: a Reusable RESTification Approach
Lecrivain, Matthéo, Barry, Hanifa, Tamzalit, Dalila, Sahraoui, Houari
The microservices architectural style has become the de facto standard for large-scale cloud applications, offering numerous benefits in scalability, maintainability, and deployment flexibility. Many organizations are pursuing the migration of legacy monolithic systems to a microservices architecture. However, this process is challenging, risky, time-intensive, and prone-to-failure while several organizations lack necessary financial resources, time, or expertise to set up this migration process. So, rather than trying to migrate a legacy system where migration is risky or not feasible, we suggest exposing it as a microservice application without without having to migrate it. In this paper, we present a reusable, automated, two-phase approach that combines evolutionary algorithms with machine learning techniques. In the first phase, we identify microservices at the method level using a multi-objective genetic algorithm that considers both structural and semantic dependencies between methods. In the second phase, we generate REST APIs for each identified microservice using a classification algorithm to assign HTTP methods and endpoints. We evaluated our approach with a case study on the Spring PetClinic application, which has both monolithic and microservices implementations that serve as ground truth for comparison. Results demonstrate that our approach successfully aligns identified microservices with those in the reference microservices implementation, highlighting its effectiveness in service identification and API generation.
Residual Learning Inspired Crossover Operator and Strategy Enhancements for Evolutionary Multitasking
Wang, Ruilin, Feng, Xiang, Yu, Huiqun, Lai, Edmund M-K
In evolutionary multitasking, strategies such as crossover operators and skill factor assignment are critical for effective knowledge transfer. Existing improvements to crossover operators primarily focus on low-dimensional variable combinations, such as arithmetic crossover or partially mapped crossover, which are insufficient for modeling complex high-dimensional interactions.Moreover, static or semi-dynamic crossover strategies fail to adapt to the dynamic dependencies among tasks. In addition, current Multifactorial Evolutionary Algorithm frameworks often rely on fixed skill factor assignment strategies, lacking flexibility. To address these limitations, this paper proposes the Multifactorial Evolutionary Algorithm-Residual Learning (MFEA-RL) method based on residual learning. The method employs a Very Deep Super-Resolution (VDSR) model to generate high-dimensional residual representations of individuals, enhancing the modeling of complex relationships within dimensions. A ResNet-based mechanism dynamically assigns skill factors to improve task adaptability, while a random mapping mechanism efficiently performs crossover operations and mitigates the risk of negative transfer. Theoretical analysis and experimental results show that MFEA-RL outperforms state-of-the-art multitasking algorithms. It excels in both convergence and adaptability on standard evolutionary multitasking benchmarks, including CEC2017-MTSO and WCCI2020-MTSO. Additionally, its effectiveness is validated through a real-world application scenario.
Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack
Wang, Cheng, Wang, Yiwei, Cai, Yujun, Hooi, Bryan
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
Parameter Competition Balancing for Model Merging Junlin Lee 1 Jing Li
While fine-tuning pretrained models has become common practice, these models often underperform outside their specific domains. Recently developed model merging techniques enable the direct integration of multiple models, each finetuned for distinct tasks, into a single model. This strategy promotes multitasking capabilities without requiring retraining on the original datasets. However, existing methods fall short in addressing potential conflicts and complex correlations between tasks, especially in parameter-level adjustments, posing a challenge in effectively balancing parameter competition across various tasks.