Collaborating Authors

Evolutionary Systems: AI-Alerts

Team builds first living robots--that can reproduce


Over billions of years, organisms have evolved many ways of replicating, from budding plants to sexual animals to invading viruses. Now scientists at the University of Vermont, Tufts University, and the Wyss Institute for Biologically Inspired Engineering at Harvard University have discovered an entirely new form of biological reproduction--and applied their discovery to create the first-ever, self-replicating living robots. The same team that built the first living robots ("Xenobots," assembled from frog cells--reported in 2020) has discovered that these computer-designed and hand-assembled organisms can swim out into their tiny dish, find single cells, gather hundreds of them together, and assemble "baby" Xenobots inside their Pac-Man-shaped "mouth"--that, a few days later, become new Xenobots that look and move just like themselves. And then these new Xenobots can go out, find cells, and build copies of themselves. "With the right design--they will spontaneously self-replicate," says Joshua Bongard, Ph.D., a computer scientist and robotics expert at the University of Vermont who co-led the new research.

Artificial intelligence can help spot traces of natural selection


Researchers have used advanced AI and large sets of genomic data to unveil how humans have adapted to recent diseases. The method could also be applied to new pathogens such as the coronavirus that causes COVID-19, helping identify which gene mutations may be associated with more severe cases of the disease. The study, by researchers from Imperial College London, the Middle East Technical University, Turkey, and the Universita degli Studi di Bari Aldo Moro, Italy, is published today in a Special Issue of Molecular Ecology Resources, "Machine Learning techniques in Evolution and Ecology." Natural selection is the process by which beneficial gene mutations are preserved from generation to generation, until they become dominant in our genomes--the catalog of all our genes. One thing that can drive natural selection is protection against pathogens.

Machine learning spots natural selection at work in human genome


The ability to sequence genomes quickly has provided scientists with reams of data, but understanding how evolution has shaped humans is still a difficult task.Credit: Guy Tear/Wellcome Coll./CC Pinpointing where and how the human genome is evolving can be like hunting for a needle in a haystack. Each person's genome contains three billion building blocks called nucleotides, and researchers must compile data from thousands of people to discover patterns that signal how genes have been shaped by evolutionary pressures. To find these patterns, a growing number of geneticists are turning to a form of machine learning called deep learning. Proponents of the approach say that deep-learning algorithms incorporate fewer explicit assumptions about what the genetic signatures of natural selection should look like than do conventional statistical methods.