Goto

Collaborating Authors

 Simulation of Human Behavior


Deep Learning for Predicting Human Strategic Behavior

Neural Information Processing Systems

Predicting the behavior of human participants in strategic settings is an important problem in many domains. Most existing work either assumes that participants are perfectly rational, or attempts to directly model each participant's cognitive processes based on insights from cognitive psychology and experimental economics. In this work, we present an alternative, a deep learning approach that automatically performs cognitive modeling without relying on such expert knowledge. We introduce a novel architecture that allows a single network to generalize across different input and output dimensions by using matrix units rather than scalar units, and show that its performance significantly outperforms that of the previous state of the art, which relies on expert-constructed features.


An Autoencoder-Like Nonnegative Matrix Co-Factorization for Improved Student Cognitive Modeling Yinghui Pan

Neural Information Processing Systems

Student cognitive modeling (SCM) is a fundamental task in intelligent education, with applications ranging from personalized learning to educational resource allocation. By exploiting students' response logs, SCM aims to predict their exercise performance as well as estimate knowledge proficiency in a subject. Data mining approaches such as matrix factorization can obtain high accuracy in predicting student performance on exercises, but the knowledge proficiency is unknown or poorly estimated. The situation is further exacerbated if only sparse interactions exist between exercises and students (or knowledge concepts). To solve this dilemma, we root monotonicity (a fundamental psychometric theory on educational assessments) in a co-factorization framework and present an autoencoder-like nonnegative matrix co-factorization (AE-NMCF), which improves the accuracy of estimating the student's knowledge proficiency via an encoder-decoder learning pipeline. The resulting estimation problem is nonconvex with nonnegative constraints. We introduce a projected gradient method based on block coordinate descent with Lipschitz constants and guarantee the method's theoretical convergence. Experiments on several real-world data sets demonstrate the efficacy of our approach in terms of both performance prediction accuracy and knowledge estimation ability, when compared with existing student cognitive models.


Learning to Cooperate with Humans using Generative Agents

Neural Information Processing Systems

Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show learning a generative model of human partners can effectively address this issue.



An Autoencoder-Like Nonnegative Matrix Co-Factorization for Improved Student Cognitive Modeling

Neural Information Processing Systems

Student cognitive modeling (SCM) is a fundamental task in intelligent education, with applications ranging from personalized learning to educational resource allocation. By exploiting students' response logs, SCM aims to predict their exercise performance as well as estimate knowledge proficiency in a subject. Data mining approaches such as matrix factorization can obtain high accuracy in predicting student performance on exercises, but the knowledge proficiency is unknown or poorly estimated. The situation is further exacerbated if only sparse interactions exist between exercises and students (or knowledge concepts). To solve this dilemma, we root monotonicity (a fundamental psychometric theory on educational assessments) in a co-factorization framework and present an autoencoder-like nonnegative matrix co-factorization (AE-NMCF), which improves the accuracy of estimating the student's knowledge proficiency via an encoder-decoder learning pipeline.


An Autoencoder-Like Nonnegative Matrix Co-Factorization for Improved Student Cognitive Modeling Yinghui Pan

Neural Information Processing Systems

Student cognitive modeling (SCM) is a fundamental task in intelligent education, with applications ranging from personalized learning to educational resource allocation. By exploiting students' response logs, SCM aims to predict their exercise performance as well as estimate knowledge proficiency in a subject. Data mining approaches such as matrix factorization can obtain high accuracy in predicting student performance on exercises, but the knowledge proficiency is unknown or poorly estimated. The situation is further exacerbated if only sparse interactions exist between exercises and students (or knowledge concepts). To solve this dilemma, we root monotonicity (a fundamental psychometric theory on educational assessments) in a co-factorization framework and present an autoencoder-like nonnegative matrix co-factorization (AE-NMCF), which improves the accuracy of estimating the student's knowledge proficiency via an encoder-decoder learning pipeline. The resulting estimation problem is nonconvex with nonnegative constraints. We introduce a projected gradient method based on block coordinate descent with Lipschitz constants and guarantee the method's theoretical convergence. Experiments on several real-world data sets demonstrate the efficacy of our approach in terms of both performance prediction accuracy and knowledge estimation ability, when compared with existing student cognitive models.


Learning to Cooperate with Humans using Generative Agents

Neural Information Processing Systems

Training agents that can coordinate zero-shot with humans is a key mission in multi-agent reinforcement learning (MARL). Current algorithms focus on training simulated human partner policies which are then used to train a Cooperator agent. The simulated human is produced either through behavior cloning over a dataset of human cooperation behavior, or by using MARL to create a population of simulated agents. However, these approaches often struggle to produce a Cooperator that can coordinate well with real humans, since the simulated humans fail to cover the diverse strategies and styles employed by people in the real world. We show learning a generative model of human partners can effectively address this issue.




Improving Natural Language Processing Tasks with Human Gaze-Guided Neural Attention

Neural Information Processing Systems

A lack of corpora has so far limited advances in integrating human gaze data as a supervisory signal in neural attention mechanisms for natural language processing (NLP). We propose a novel hybrid text saliency model (TSM) that, for the first time, combines a cognitive model of reading with explicit human gaze supervision in a single machine learning framework. On four different corpora we demonstrate that our hybrid TSM duration predictions are highly correlated with human gaze ground truth. We further propose a novel joint modeling approach to integrate TSM predictions into the attention layer of a network designed for a specific upstream NLP task without the need for any task-specific human gaze data. We demonstrate that our joint model outperforms the state of the art in paraphrase generation on the Quora Question Pairs corpus by more than 10% in BLEU-4 and achieves state of the art performance for sentence compression on the challenging Google Sentence Compression corpus. As such, our work introduces a practical approach for bridging between data-driven and cognitive models and demonstrates a new way to integrate human gaze-guided neural attention into NLP tasks.