Goto

Collaborating Authors

 Retail


From Predictive to Prescriptive Analytics

arXiv.org Machine Learning

In this paper, we combine ideas from machine learning (ML) and operations research and management science (OR/MS) in developing a framework, along with specific methods, for using data to prescribe decisions in OR/MS problems. In a departure from other work on data-driven optimization and reflecting our practical experience with the data available in applications of OR/MS, we consider data consisting, not only of observations of quantities with direct effect on costs/revenues, such as demand or returns, but predominantly of observations of associated auxiliary quantities. The main problem of interest is a conditional stochastic optimization problem, given imperfect observations, where the joint probability distributions that specify the problem are unknown. We demonstrate that our proposed solution methods are generally applicable to a wide range of decision problems. We prove that they are computationally tractable and asymptotically optimal under mild conditions even when data is not independent and identically distributed (iid) and even for censored observations. As an analogue to the coefficient of determination $R^2$, we develop a metric $P$ termed the coefficient of prescriptiveness to measure the prescriptive content of data and the efficacy of a policy from an operations perspective. To demonstrate the power of our approach in a real-world setting we study an inventory management problem faced by the distribution arm of an international media conglomerate, which ships an average of 1 billion units per year. We leverage both internal data and public online data harvested from IMDb, Rotten Tomatoes, and Google to prescribe operational decisions that outperform baseline measures. Specifically, the data we collect, leveraged by our methods, accounts for an 88% improvement as measured by our coefficient of prescriptiveness.


Maximally Informative Hierarchical Representations of High-Dimensional Data

arXiv.org Machine Learning

We consider a set of probabilistic functions of some input variables as a representation of the inputs. We present bounds on how informative a representation is about input data. We extend these bounds to hierarchical representations so that we can quantify the contribution of each layer towards capturing the information in the original data. The special form of these bounds leads to a simple, bottom-up optimization procedure to construct hierarchical representations that are also maximally informative about the data. This optimization has linear computational complexity and constant sample complexity in the number of variables. These results establish a new approach to unsupervised learning of deep representations that is both principled and practical. We demonstrate the usefulness of the approach on both synthetic and real-world data.


26 Inference and Knowledge in Language Comprehension

AI Classics

To use language one must be able to make inferences about the information which language conveys. This is apparent in many ways. For one thing, many of the processes which we typically consider "linguistic" require inference making. For example, structural disambiguation: (1) Waiter, I would like spaghetti with meat sauce and wine. You would not expect to be served a bowl of spaghetti floating in meat sauce and wine. That is, you would expect the meal represented by structure (2) rather than that represented by (3).


Ordering Effects and Belief Adjustment in the Use of Comparison Shopping Agents

AAAI Conferences

The popularity of online shopping has contributed to the development of comparison shopping agents (CSAs) aiming to facilitate buyers' ability to compare prices of online stores for any desired product. Furthermore, the plethora of CSAs in today's markets enables buyers to query more than a single CSA when shopping, thus expanding even further the list of sellers whose prices they obtain. This potentially decreases the chance of a purchase based on the prices outputted as a result of any single query, and consequently decreases each CSAs' expected revenue per-query. Obviously, a CSA can improve its competence in such settings by acquiring more sellers' prices, potentially resulting in a more attractive ``best price''. In this paper we suggest a complementary approach that improves the attractiveness of a CSA by presenting the prices to the user in a specific intelligent manner, which is based on known cognitive-biases.The advantage of this approach is its ability to affect the buyer's tendency to terminate her search for a better price, hence avoid querying further CSAs, without having the CSA spend any of its resources on finding better prices to present.The effectiveness of our method is demonstrated using real data, collected from four CSAs for five products. Our experiments with people confirm that the suggested method effectively influence people in a way that is highly advantageous to the CSA.


Effective Bayesian Modeling of Groups of Related Count Time Series

arXiv.org Machine Learning

Time series of counts arise in a variety of forecasting applications, for which traditional models are generally inappropriate. This paper introduces a hierarchical Bayesian formulation applicable to count time series that can easily account for explanatory variables and share statistical strength across groups of related time series. We derive an efficient approximate inference technique, and illustrate its performance on a number of datasets from supply chain planning.


Towards the Development of a Simulator for Investigating the Impact of People Management Practices on Retail Performance

arXiv.org Artificial Intelligence

Often models for understanding the impact of management practices on retail performance are developed under the assumption of stability, equilibrium and linearity, whereas retail operations are considered in reality to be dynamic, non-linear and complex. Alternatively, discrete event and agent-based modelling are approaches that allow the development of simulation models of heterogeneous non-equilibrium systems for testing out different scenarios. When developing simulation models one has to abstract and simplify from the real world, which means that one has to try and capture the 'essence' of the system required for developing a representation of the mechanisms that drive the progression in the real system. Simulation models can be developed at different levels of abstraction. To know the appropriate level of abstraction for a specific application is often more of an art than a science. We have developed a retail branch simulation model to investigate which level of model accuracy is required for such a model to obtain meaningful results for practitioners.


Investigating Output Accuracy for a Discrete Event Simulation Model and an Agent Based Simulation Model

arXiv.org Artificial Intelligence

In this paper, we investigate output accuracy for a Discrete Event Simulation (DES) model and Agent Based Simulation (ABS) model. The purpose of this investigation is to find out which of these simulation techniques is the best one for modelling human reactive behaviour in the retail sector. In order to study the output accuracy in both models, we have carried out a validation experiment in which we compared the results from our simulation models to the performance of a real system. Our experiment was carried out using a large UK department store as a case study. We had to determine an efficient implementation of management policy in the store's fitting room using DES and ABS. Overall, we have found that both simulation models were a good representation of the real system when modelling human reactive behaviour.


Multi-Agent Simulation and Management Practices

arXiv.org Artificial Intelligence

Intelligent agents offer a new and exciting way of understanding the world of work. Agent-Based Simulation (ABS), one way of using intelligent agents, carries great potential for progressing our understanding of management practices and how they link to retail performance. We have developed simulation models based on research by a multi-disciplinary team of economists, work psychologists and computer scientists. We will discuss our experiences of implementing these concepts working with a well-known retail department store. There is no doubt that management practices are linked to the performance of an organisation (Reynolds et al., 2005; Wall & Wood, 2005). Best practices have been developed, but when it comes down to the actual application of these guidelines considerable ambiguity remains regarding their effectiveness within particular contexts (Siebers et al., forthcoming a). Most Operational Research (OR) methods can only be used as analysis tools once management practices have been implemented. Often they are not very useful for giving answers to speculative 'what-if' questions, particularly when one is interested in the development of the system over time rather than just the state of the system at a certain point in time. Simulation can be used to analyse the operation of dynamic and stochastic systems. ABS is particularly useful when complex interactions between system entities exist, such as autonomous decision making or negotiation. In an ABS model the researcher explicitly describes the decision process of simulated actors at the micro level. Structures emerge at the macro level as a result of the actions of the agents and their interactions with other agents and the environment. 3 We will show how ABS experiments can deal with testing and optimising management practices such as training, empowerment or teamwork. Hence, questions such as "will staff setting their own break times improve performance?" can be investigated.


Comparing Simulation Output Accuracy of Discrete Event and Agent Based Models: A Quantitive Approach

arXiv.org Artificial Intelligence

In our research we investigate the output accuracy of discrete event simulation models and agent based simulation models when studying human centric complex systems. In this paper we focus on human reactive behaviour as it is possible in both modelling approaches to implement human reactive behaviour in the model by using standard methods. As a case study we have chosen the retail sector, and here in particular the operations of the fitting room in the women wear department of a large UK department store. In our case study we looked at ways of determining the efficiency of implementing new management policies for the fitting room operation through modelling the reactive behaviour of staff and customers of the department. First, we have carried out a validation experiment in which we compared the results from our models to the performance of the real system. This experiment also allowed us to establish differences in output accuracy between the two modelling methids. In a second step a multi-scenario experiment was carried out to study the behaviour of the models when they are used for the purpose of operational improvement. Overall we have found that for our case study example both discrete event simulation and agent based simulation have the same potential to support the investigation into the efficiency of implementing new management policies.


Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses

AI Magazine

The Kiva warehouse-management system creates a new paradigm for pick-pack-and-ship warehouses that significantly improves worker productivity. The Kiva system uses movable storage shelves that can be lifted by small, autonomous robots. By bringing the product to the worker, productivity is increased by a factor of two or more, while simultaneously improving accountability and flexibility. A Kiva installation for a large distribution center may require 500 or more vehicles. As such, the Kiva system represents the first commercially available, large-scale autonomous robot system. The first permanent installation of a Kiva system was deployed in the summer of 2006.