Assessment Methods
R.U.Psycho? Robust Unified Psychometric Testing of Language Models
Schelb, Julian, Borin, Orr, Garcia, David, Spitz, Andreas
Generative language models are increasingly being subjected to psychometric questionnaires intended for human testing, in efforts to establish their traits, as benchmarks for alignment, or to simulate participants in social science experiments. While this growing body of work sheds light on the likeness of model responses to those of humans, concerns are warranted regarding the rigour and reproducibility with which these experiments may be conducted. Instabilities in model outputs, sensitivity to prompt design, parameter settings, and a large number of available model versions increase documentation requirements. Consequently, generalization of findings is often complex and reproducibility is far from guaranteed. In this paper, we present R.U.Psycho, a framework for designing and running robust and reproducible psychometric experiments on generative language models that requires limited coding expertise. We demonstrate the capability of our framework on a variety of psychometric questionnaires, which lend support to prior findings in the literature. R.U.Psycho is available as a Python package at https://github.com/julianschelb/rupsycho.
eRevise+RF: A Writing Evaluation System for Assessing Student Essay Revisions and Providing Formative Feedback
Liu, Zhexiong, Litman, Diane, Wang, Elaine, Li, Tianwen, Gobat, Mason, Matsumura, Lindsay Clare, Correnti, Richard
The ability to revise essays in response to feedback is important for students' writing success. An automated writing evaluation (AWE) system that supports students in revising their essays is thus essential. We present eRevise+RF, an enhanced AWE system for assessing student essay revisions (e.g., changes made to an essay to improve its quality in response to essay feedback) and providing revision feedback. We deployed the system with 6 teachers and 406 students across 3 schools in Pennsylvania and Louisiana. The results confirmed its effectiveness in (1) assessing student essays in terms of evidence usage, (2) extracting evidence and reasoning revisions across essays, and (3) determining revision success in responding to feedback. The evaluation also suggested eRevise+RF is a helpful system for young students to improve their argumentative writing skills through revision and formative feedback.
An Automated Explainable Educational Assessment System Built on LLMs
Li, Jiazheng, Bobrov, Artem, West, David, Aloisi, Cesare, He, Yulan
In this demo, we present AERA Chat, an automated and explainable educational assessment system designed for interactive and visual evaluations of student responses. This system leverages large language models (LLMs) to generate automated marking and rationale explanations, addressing the challenge of limited explainability in automated educational assessment and the high costs associated with annotation. Our system allows users to input questions and student answers, providing educators and researchers with insights into assessment accuracy and the quality of LLM-assessed rationales. Additionally, it offers advanced visualization and robust evaluation tools, enhancing the usability for educational assessment and facilitating efficient rationale verification. Our demo video can be found at https://youtu.be/qUSjz-sxlBc.
NLP Cluster Analysis of Common Core State Standards and NAEP Item Specifications
Camilli, Gregory, Suter, Larry
Camilli (2024) proposed a methodology using natural language processing (NLP) to map the relationship of a set of content standards to item specifications. This study provided evidence that NLP can be used to improve the mapping process. As part of this investigation, the nominal classifications of standards and items specifications were used to examine construct equivalence. In the current paper, we determine the strength of empirical support for the semantic distinctiveness of these classifications, which are known as "domains" for Common Core standards, and "strands" for National Assessment of Educational Progress (NAEP) item specifications. This is accomplished by separate k-means clustering for standards and specifications of their corresponding embedding vectors. We then briefly illustrate an application of these findings.
Introducing Flexible Monotone Multiple Choice Item Response Theory Models and Bit Scales
Wallmark, Joakim, Josefsson, Maria, Wiberg, Marie
Item Response Theory (IRT) is a powerful statistical approach for evaluating test items and determining test taker abilities through response analysis. An IRT model that better fits the data leads to more accurate latent trait estimates. In this study, we present a new model for multiple choice data, the monotone multiple choice (MMC) model, which we fit using autoencoders. Using both simulated scenarios and real data from the Swedish Scholastic Aptitude Test, we demonstrate empirically that the MMC model outperforms the traditional nominal response IRT model in terms of fit. Furthermore, we illustrate how the latent trait scale from any fitted IRT model can be transformed into a ratio scale, aiding in score interpretation and making it easier to compare different types of IRT models. We refer to these new scales as bit scales. Bit scales are especially useful for models for which minimal or no assumptions are made for the latent trait scale distributions, such as for the autoencoder fitted models in this study.
Feedback-Generation for Programming Exercises With GPT-4
Azaiz, Imen, Kiesler, Natalie, Strickroth, Sven
Ever since Large Language Models (LLMs) and related applications have become broadly available, several studies investigated their potential for assisting educators and supporting students in higher education. LLMs such as Codex, GPT-3.5, and GPT 4 have shown promising results in the context of large programming courses, where students can benefit from feedback and hints if provided timely and at scale. This paper explores the quality of GPT-4 Turbo's generated output for prompts containing both the programming task specification and a student's submission as input. Two assignments from an introductory programming course were selected, and GPT-4 was asked to generate feedback for 55 randomly chosen, authentic student programming submissions. The output was qualitatively analyzed regarding correctness, personalization, fault localization, and other features identified in the material. Compared to prior work and analyses of GPT-3.5, GPT-4 Turbo shows notable improvements. For example, the output is more structured and consistent. GPT-4 Turbo can also accurately identify invalid casing in student programs' output. In some cases, the feedback also includes the output of the student program. At the same time, inconsistent feedback was noted such as stating that the submission is correct but an error needs to be fixed. The present work increases our understanding of LLMs' potential, limitations, and how to integrate them into e-assessment systems, pedagogical scenarios, and instructing students who are using applications based on GPT-4.
An NLP Crosswalk Between the Common Core State Standards and NAEP Item Specifications
Natural language processing (NLP) is rapidly developing for applications in educational assessment. In this paper, I describe an NLP-based procedure that can be used to support subject matter experts in establishing a crosswalk between item specifications and content standards. This paper extends recent work by proposing and demonstrating the use of multivariate similarity based on embedding vectors for sentences or texts. In particular, a hybrid regression procedure is demonstrated for establishing the match of each content standard to multiple item specifications. The procedure is used to evaluate the match of the Common Core State Standards (CCSS) for mathematics at grade 4 to the corresponding item specifications for the 2026 National Assessment of Educational Progress (NAEP).
Large Language Models Enable Automated Formative Feedback in Human-Robot Interaction Tasks
Jensen, Emily, Sankaranarayanan, Sriram, Hayes, Bradley
We claim that LLMs can be paired with formal analysis methods to provide accessible, relevant feedback for HRI tasks. While logic specifications are useful for defining and assessing a task, these representations are not easily interpreted by non-experts. Luckily, LLMs are adept at generating easy-to-understand text that explains difficult concepts. By integrating task assessment outcomes and other contextual information into an LLM prompt, we can effectively synthesize a useful set of recommendations for the learner to improve their performance.
Automated Assessment and Adaptive Multimodal Formative Feedback Improves Psychomotor Skills Training Outcomes in Quadrotor Teleoperation
Jensen, Emily, Sankaranarayanan, Sriram, Hayes, Bradley
The workforce will need to continually upskill in order to meet the evolving demands of industry, especially working with robotic and autonomous systems. Current training methods are not scalable and do not adapt to the skills that learners already possess. In this work, we develop a system that automatically assesses learner skill in a quadrotor teleoperation task using temporal logic task specifications. This assessment is used to generate multimodal feedback based on the principles of effective formative feedback. Participants perceived the feedback positively. Those receiving formative feedback viewed the feedback as more actionable compared to receiving summary statistics. Participants in the multimodal feedback condition were more likely to achieve a safe landing and increased their safe landings more over the experiment compared to other feedback conditions. Finally, we identify themes to improve adaptive feedback and discuss and how training for complex psychomotor tasks can be integrated with learning theories.
How Well Can You Articulate that Idea? Insights from Automated Formative Assessment
Karizaki, Mahsa Sheikhi, Gnesdilow, Dana, Puntambekar, Sadhana, Passonneau, Rebecca J.
Automated methods are becoming increasingly integrated into studies of formative feedback on students' science explanation writing. Most of this work, however, addresses students' responses to short answer questions. We investigate automated feedback on students' science explanation essays, where students must articulate multiple ideas. Feedback is based on a rubric that identifies the main ideas students are prompted to include in explanatory essays about the physics of energy and mass, given their experiments with a simulated roller coaster. We have found that students generally improve on revised versions of their essays. Here, however, we focus on two factors that affect the accuracy of the automated feedback. First, we find that the main ideas in the rubric differ with respect to how much freedom they afford in explanations of the idea, thus explanation of a natural law is relatively constrained. Students have more freedom in how they explain complex relations they observe in their roller coasters, such as transfer of different forms of energy. Second, by tracing the automated decision process, we can diagnose when a student's statement lacks sufficient clarity for the automated tool to associate it more strongly with one of the main ideas above all others. This in turn provides an opportunity for teachers and peers to help students reflect on how to state their ideas more clearly.