Country
A Polygonal Line Algorithm for Constructing Principal Curves
Kégl, Balázs, Krzyzak, Adam, Linder, Tamás, Zeger, Kenneth
Principal curves have been defined as "self consistent" smooth curves which pass through the "middle" of a d-dimensional probability distribution ordata cloud. Recently, we [1] have offered a new approach by defining principal curves as continuous curves of a given length which minimize the expected squared distance between the curve and points of the space randomly chosen according to a given distribution. The new definition made it possible to carry out a theoretical analysis of learning principal curves from training data. In this paper we propose a practical construction based on the new definition. Simulation results demonstrate that the new algorithm compares favorably with previous methods both in terms of performance and computational complexity.
Optimizing Correlation Algorithms for Hardware-Based Transient Classification
Edwards, R. Timothy, Cauwenberghs, Gert, Pineda, Fernando J.
The perfonnance of dedicated VLSI neural processing hardware depends critically on the design of the implemented algorithms. We have previously proposedan algorithm for acoustic transient classification [1]. Having implemented and demonstrated this algorithm in a mixed-mode architecture, we now investigate variants on the algorithm, using time and frequency channel differencing, input and output nonnalization, and schemes to binarize and train the template values, with the goal of achieving optimalclassification perfonnance for the chosen hardware.
Learning from Dyadic Data
Hofmann, Thomas, Puzicha, Jan, Jordan, Michael I.
Dyadzc data refers to a domain with two finite sets of objects in which observations are made for dyads, i.e., pairs with one element from either set. This type of data arises naturally in many application ranging from computational linguistics and information retrieval to preference analysis and computer vision. In this paper, we present a systematic, domain-independent framework of learning from dyadic data by statistical mixture models. Our approach covers different models with fiat and hierarchical latent class structures. We propose an annealed version of the standard EM algorithm for model fitting which is empirically evaluated on a variety of data sets from different domains. 1 Introduction Over the past decade learning from data has become a highly active field of research distributed over many disciplines like pattern recognition, neural computation, statistics, machine learning, and data mining.
Approximate Learning of Dynamic Models
Inference is a key component in learning probabilistic models from partially observable data. When learning temporal models, each of the many inference phases requires a traversal over an entire long data sequence; furthermore, the data structures manipulated are exponentially large, making this process computationally expensive. In [2], we describe an approximate inference algorithm for monitoring stochastic processes, and prove bounds on its approximation error. In this paper, we apply this algorithm as an approximate forward propagation step in an EM algorithm for learning temporal Bayesian networks. We provide a related approximation for the backward step, and prove error bounds for the combined algorithm.
Risk Sensitive Reinforcement Learning
Neuneier, Ralph, Mihatsch, Oliver
A directed generative model for binary data using a small number of hidden continuous units is investigated. The relationships between the correlations of the underlying continuous Gaussian variables and the binary output variables are utilized to learn the appropriate weights of the network. The advantages of this approach are illustrated on a translationally invariant binary distribution and on handwritten digit images. Introduction Principal Components Analysis (PCA) is a widely used statistical technique for representing data with a large number of variables [1]. It is based upon the assumption that although the data is embedded in a high dimensional vector space, most of the variability in the data is captured by a much lower climensional manifold. In particular for PCA, this manifold is described by a linear hyperplane whose characteristic directions are given by the eigenvectors of the correlation matrix with the largest eigenvalues. The success of PCA and closely related techniques such as Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data exhibit the low dimensional manifold structure assumed by these models [2, 3]. However, the linear manifold structure of PCA is not appropriate for data with binary valued variables.
Semi-Supervised Support Vector Machines
Bennett, Kristin P., Demiriz, Ayhan
We introduce a semi-supervised support vector machine (S3yM) method. Given a training set of labeled data and a working set of unlabeled data, S3YM constructs a support vector machine using both the training and working sets. We use S3 YM to solve the transduction problem using overall risk minimization (ORM) posed by Yapnik. The transduction problem is to estimate the value of a classification function at the given points in the working set. This contrasts with the standard inductive learning problem of estimating the classification function at all possible values and then using the fixed function to deduce the classes of the working set data.
Using Collective Intelligence to Route Internet Traffic
Wolpert, David, Tumer, Kagan, Frank, Jeremy
A COllective INtelligence (COIN) is a set of interacting reinforcement learning (RL) algorithms designed in an automated fashion so that their collective behavior optimizes a global utility function. We summarize the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform all previously investigated RL-based, shortest path routing algorithms. 1 INTRODUCTION COllective INtelligences (COINs) are large, sparsely connected recurrent neural networks, whose "neurons" are reinforcement learning (RL) algorithms. The distinguishing feature of COINs is that their dynamics involves no centralized control, but only the collective effects of the individual neurons each modifying their behavior via their individual RL algorithms. This restriction holds even though the goal of the COIN concerns the system's global behavior.
Neural Networks for Density Estimation
Magdon-Ismail, Malik, Atiya, Amir F.
Even if the underlying phenomena are inherently deterministic, the complexity of these phenomena often makes a probabilistic formulation the only feasible approach from the computational point of view. Although quantities such as the mean, the variance, and possibly higher order moments of a random variable have often been sufficient to characterize a particular problem, the quest for higher modeling accuracy, and for more realistic assumptions drives us towards modeling the available random variables using their probability density. This of course leads us to the problem of density estimation (see [6]). The most common approach for density estimation is the nonparametric approach, where the density is determined according to a formula involving the data points available. The most common non parametric methods are the kernel density estimator, also known as the Parzen window estimator [4] and the k-nearest neighbor technique [1].
Signal Detection in Noisy Weakly-Active Dendrites
Here we derive measures quantifying the information loss of a synaptic signal due to the presence of neuronal noise sources, as it electrotonically propagates along a weakly-active dendrite. We model the dendrite as an infinite linear cable, with noise sources distributed along its length. The noise sources we consider are thermal noise, channel noise arising from the stochastic nature of voltage-dependent ionic channels (K and Na) and synaptic noise due to spontaneous background activity. We assess the efficacy of information transfer using a signal detection paradigm where the objective is to detect the presence/absence of a presynaptic spike from the post-synaptic membrane voltage. This allows us to analytically assess the role of each of these noise sources in information transfer. For our choice of parameters, we find that the synaptic noise is the dominant noise source which limits the maximum length over which information be reliably transmitted. 1 Introduction This is a continuation of our efforts (Manwani and Koch, 1998) to understand the information capacity ofa neuronal link (in terms of the specific nature of neural "hardware") by a systematic study of information processing at different biophysical stages in a model of a single neuron. Here we investigate how the presence of neuronal noise sources influences the information transmission capabilities of a simplified model of a weakly-active dendrite. The noise sources we include are, thermal noise, channel noise arising from the stochastic nature of voltage-dependent channels (K and Na) and synaptic noise due to spontaneous background activity. We characterize the noise sources using analytical expressions of their current power spectral densities and compare their magnitudes for dendritic parameters reported in literature (Mainen and Sejnowski, 1998).