Goto

Collaborating Authors

 Country


Block A*: Database-Driven Search with Applications in Any-Angle Path-Planning

AAAI Conferences

We present three new ideas for grid-based path-planning algorithms that improve the search speed and quality of the paths found. First, we introduce a new type of database, the Local Distance Database (LDDB), that contains distances between boundary points of a local neighborhood. Second, an LDDB based algorithm is introduced, called Block A*, that calculates the optimal path between start and goal locations given the local distances stored in the LDDB. Third, our experimental results for any-angle path planning in a wide variety of test domains, including real game maps, show that Block A* is faster than both A* and the previously best grid-based any-angle search algorithm, Theta*.


Verifying Intervention Policies to Counter Infection Propagation over Networks: A Model Checking Approach

AAAI Conferences

Spread of infections (diseases, ideas, etc.) in a network can be modeled as the evolution of states of nodes in a graph as a function of the states of their neighbors. Given an initial configuration of a network in which a subset of the nodes have been infected, and an infection propagation function that specifies how the states of the nodes evolve over time, we show how to use model checking to identify, verify, and evaluate the effectiveness of intervention policies for containing the propagation of infection over such networks.


Commonsense Causal Reasoning Using Millions of Personal Stories

AAAI Conferences

The personal stories that people write in their Internet weblogs include a substantial amount of information about the causal relationships between everyday events. In this paper we describe our efforts to use millions of these stories for automated commonsense causal reasoning. Casting the commonsense causal reasoning problem as a Choice of Plausible Alternatives, we describe four experiments that compare various statistical and information retrieval approaches to exploit causal information in story corpora. The top performing system in these experiments uses a simple co-occurrence statistic between words in the causal antecedent and consequent, calculated as the Pointwise Mutual Information between words in a corpus of millions of personal stories.


Reasoning About General Games Described in GDL-II

AAAI Conferences

Recently the general Game Description Language (GDL) has been extended so as to cover arbitrary games with incomplete/imperfect information. Learning โ€” without human intervention โ€” to play such games poses a reasoning challenge for general game-playing systems that is much more intricate than in case of complete information games. Action formalisms like the Situation Calculus have been developed for precisely this purpose. In this paper we present a full embedding of the Game Description Language into the Situation Calculus (with Scherl and Levesque's knowledge fluent ). We formally prove that this provides a sound and complete reasoning method for players' knowledge about game states as well as about the knowledge of the other players.


Balancing Safety and Exploitability in Opponent Modeling

AAAI Conferences

Opponent modeling is a critical mechanism in repeated games. It allows a player to adapt its strategy in order to better respond to the presumed preferences of his opponents. We introduce a new modeling technique that adaptively balances exploitability and risk reduction. An opponentโ€™s strategy is modeled with a set of possible strategies that contain the actual strategy with a high probability. The algorithm is safe as the expected payoff is above the minimax payoff with a high probability, and can exploit the opponentsโ€™ preferences when sufficient observations have been obtained. We apply them to normal-form games and stochastic games with a finite number of stages. The performance of the proposed approach is first demonstrated on repeated rock-paper-scissors games. Subsequently, the approach is evaluated in a human-robot table-tennis setting where the robot player learns to prepare to return a served ball. By modeling the human players, the robot chooses a forehand, backhand or middle preparation pose before they serve. The learned strategies can exploit the opponentโ€™s preferences, leading to a higher rate of successful returns.


Improving Cost-Optimal Domain-Independent Symbolic Planning

AAAI Conferences

Symbolic search with BDDs has shown remarkable performance for cost-optimal deterministic planning by exploiting a succinct representation and exploration of state sets. In this paper we enhance BDD-based planning by applying a combination of domain-independent search techniques: the optimization of the variable ordering in the BDD by approximating the linear arrangement problem, pattern selection for improved construction of search heuristics in form of symbolic partial pattern databases, and a decision procedure for the amount of bidirection in the symbolic search process.


A Nonparametric Bayesian Model of Multi-Level Category Learning

AAAI Conferences

Categories are often organized into hierarchical taxonomies, that is, tree structures where each node represents a labeled category, and a node's parent and children are, respectively, the category's supertype and subtypes. A natural question is whether it is possible to reconstruct category taxonomies in cases where we are not given explicit information about how categories are related to each other, but only a sample of observations of the members of each category. In this paper, we introduce a nonparametric Bayesian model of multi-level category learning, an extension of the hierarchical Dirichlet process (HDP) that we call the tree-HDP. We demonstrate the ability of the tree-HDP to reconstruct simulated datasets of artificial taxonomies, and show that it produces similar performance to human learners on a taxonomy inference task.


A Modular Consistency Proof for DOLCE

AAAI Conferences

We propose a novel technique for proving the consistency of large, complex and heterogeneous theories for which โ€˜standardโ€™ automated reasoning methods are considered insufficient. In particular, we exemplify the applicability of the method by establishing the consistency of the foundational ontology DOLCE, a large, first-order ontology. The approach we advocate constructs a global model for a theory, in our case DOLCE, built from smaller models of subtheories together with amalgamability properties between such models. The proof proceeds by (i) hand-crafting a so-called architectural specification of DOLCE which reflects the way models of the theory can be built, (ii) an automated verification of the amalgamability conditions, and (iii) a (partially automated) series of relative consistency proofs.


Transfer Learning for Multiple-Domain Sentiment Analysis โ€” Identifying Domain Dependent/Independent Word Polarity

AAAI Conferences

Sentiment analysis is the task of determining the attitude (positive or negative) of documents. While the polarity of words in the documents is informative for this task, polarity of some words cannot be determined without domain knowledge. Detecting word polarity thus poses a challenge for multiple-domain sentiment analysis. Previous approaches tackle this problem with transfer learning techniques, but they cannot handle multiple source domains and multiple target domains. This paper proposes a novel Bayesian probabilistic model to handle multiple source and multiple target domains. In this model, each word is associated with three factors: Domain label, domain dependence/independence and word polarity. We derive an efficient algorithm using Gibbs sampling for inferring the parameters of the model, from both labeled and unlabeled texts. Using real data, we demonstrate the effectiveness of our model in a document polarity classification task compared with a method not considering the differences between domains. Moreover our method can also tell whether each word's polarity is domain-dependent or domain-independent. This feature allows us to construct a word polarity dictionary for each domain.


Learning Structured Embeddings of Knowledge Bases

AAAI Conferences

Many Knowledge Bases (KBs) are now readily available and encompass colossal quantities of information thanks to either a long-term funding effort (e.g. WordNet, OpenCyc) or a collaborative process (e.g. Freebase, DBpedia). However, each of them is based on a different rigorous symbolic framework which makes it hard to use their data in other systems. It is unfortunate because such rich structured knowledge might lead to a huge leap forward in many other areas of AI like nat- ural language processing (word-sense disambiguation, natural language understanding, ...), vision (scene classification, image semantic annotation, ...) or collaborative filtering. In this paper, we present a learning process based on an innovative neural network architecture designed to embed any of these symbolic representations into a more flexible continuous vector space in which the original knowledge is kept and enhanced. These learnt embeddings would allow data from any KB to be easily used in recent machine learning meth- ods for prediction and information retrieval. We illustrate our method on WordNet and Freebase and also present a way to adapt it to knowledge extraction from raw text.