Country
Discovery Informatics: AI Opportunities in Scientific Discovery
Gil, Yolanda (University of Southern California) | Hirsh, Haym (Rutgers University)
Artificial Intelligence researchers have long sought to understand and replicate processes of scientific discovery. This article discusses Discovery Informatics as an emerging area of research that builds on that tradition and applies principles of intelligent computing and information systems to understand, automate, improve, and innovate processes of scientific discovery.
Analysis of Heuristic Techniques for Controlling Contagion
Tsai, Jason (University of Southern California) | Weller, Nicholas (University of Southern California) | Tambe, Milind (University of Southern California)
Many strategic actions carry a "contagious" component beyond the immediate locale of the effort itself. Viral marketing and peacekeeping operations have both been observed to have a spreading effect. In this work, we use counterinsurgency as our illustrative domain. Defined as the effort to block the spread of support for an insurgency, such operations lack the manpower to defend the entire population and must focus on the opinions of a subset of local leaders. As past researchers of security resource allocation have done, we propose using game theory to develop such policies and model the interconnected network of leaders as a graph. Unlike this past work in security games, actions in these domains possess a probabilistic, non-local impact. To address this new class of security games, recent research has used novel heuristic oracles in a double oracle formulation to generate mixed strategies. However, these heuristic oracles were evaluated only on runtime and quality scaling with the graphsize. Given the complexity of the problem, numerous other problem features and metrics must be considered to better inform practical application of such techniques. Thus, this work provides a thorough experimental analysis including variations of the contagion probability average and standard deviation. We extend the previous analysis to also examine the size of the action set constructed in the algorithms and the final mixed strategies themselves. Our results indicate that game instances featuring smaller graphs and low contagion probabilities converge slowly while games with larger graphs and medium contagion probabilities converge most quickly.
Apoptotic Stigmergic Agents for Real-Time Swarming Simulation
Parunak, H. Van Dyke (Jacobs Technology Group) | Brooks, S. Hugh (enkidu7) | Brueckner, Sven A. (Jacobs Technology Group) | Gupta, Ravi (enkidu7)
One common use for swarming agents is in social simulation. This paper reports on such a model developed to track protest activities at the May 2012 NATO summit in Chicago. The use of apoptotic stigmergic agents allows the model to run on-line, consuming two kinds of external data and reporting its results in real time.
POWERPLAY: Training an Increasingly General Problem Solver by Continually Searching for the Simplest Still Unsolvable Problem
Most of computer science focuses on automatically solving given computational problems. I focus on automatically inventing or discovering problems in a way inspired by the playful behavior of animals and humans, to train a more and more general problem solver from scratch in an unsupervised fashion. Consider the infinite set of all computable descriptions of tasks with possibly computable solutions. The novel algorithmic framework POWERPLAY (2011) continually searches the space of possible pairs of new tasks and modifications of the current problem solver, until it finds a more powerful problem solver that provably solves all previously learned tasks plus the new one, while the unmodified predecessor does not. Wow-effects are achieved by continually making previously learned skills more efficient such that they require less time and space. New skills may (partially) re-use previously learned skills. POWERPLAY's search orders candidate pairs of tasks and solver modifications by their conditional computational (time & space) complexity, given the stored experience so far. The new task and its corresponding task-solving skill are those first found and validated. The computational costs of validating new tasks need not grow with task repertoire size. POWERPLAY's ongoing search for novelty keeps breaking the generalization abilities of its present solver. This is related to Goedel's sequence of increasingly powerful formal theories based on adding formerly unprovable statements to the axioms without affecting previously provable theorems. The continually increasing repertoire of problem solving procedures can be exploited by a parallel search for solutions to additional externally posed tasks. POWERPLAY may be viewed as a greedy but practical implementation of basic principles of creativity. A first experimental analysis can be found in separate papers [53,54].
Iterative Hard Thresholding Methods for $l_0$ Regularized Convex Cone Programming
In this paper we consider $l_0$ regularized convex cone programming problems. In particular, we first propose an iterative hard thresholding (IHT) method and its variant for solving $l_0$ regularized box constrained convex programming. We show that the sequence generated by these methods converges to a local minimizer. Also, we establish the iteration complexity of the IHT method for finding an $\epsilon$-local-optimal solution. We then propose a method for solving $l_0$ regularized convex cone programming by applying the IHT method to its quadratic penalty relaxation and establish its iteration complexity for finding an $\epsilon$-approximate local minimizer. Finally, we propose a variant of this method in which the associated penalty parameter is dynamically updated, and show that every accumulation point is a local minimizer of the problem.
Learning classifier systems with memory condition to solve non-Markov problems
Zang, Zhaoxiang, Li, Dehua, Wang, Junying
In the family of Learning Classifier Systems, the classifier system XCS has been successfully used for many applications. However, the standard XCS has no memory mechanism and can only learn optimal policy in Markov environments, where the optimal action is determined solely by the state of current sensory input. In practice, most environments are partially observable environments on agent's sensation, which are also known as non-Markov environments. Within these environments, XCS either fails, or only develops a suboptimal policy, since it has no memory. In this work, we develop a new classifier system based on XCS to tackle this problem. It adds an internal message list to XCS as the memory list to record input sensation history, and extends a small number of classifiers with memory conditions. The classifier's memory condition, as a foothold to disambiguate non-Markov states, is used to sense a specified element in the memory list. Besides, a detection method is employed to recognize non-Markov states in environments, to avoid these states controlling over classifiers' memory conditions. Furthermore, four sets of different complex maze environments have been tested by the proposed method. Experimental results show that our system is one of the best techniques to solve partially observable environments, compared with some well-known classifier systems proposed for these environments.
Verbalizing Ontologies in Controlled Baltic Languages
Grūzītis, Normunds, Nešpore, Gunta, Saulīte, Baiba
Controlled natural languages (mostly English-based) recently have emerged as seemingly informal supplementary means for OWL ontology authoring, if compared to the formal notations that are used by professional knowledge engineers. In this paper we present by examples controlled Latvian language that has been designed to be compliant with the state of the art Attempto Controlled English. We also discuss relation with controlled Lithuanian language that is being designed in parallel.
A Goal-Directed Implementation of Query Answering for Hybrid MKNF Knowledge Bases
Gomes, Ana Sofia, Alferes, Jose Julio, Swift, Terrance
Ontologies and rules are usually loosely coupled in knowledge representation formalisms. In fact, ontologies use open-world reasoning while the leading semantics for rules use non-monotonic, closed-world reasoning. One exception is the tightly-coupled framework of Minimal Knowledge and Negation as Failure (MKNF), which allows statements about individuals to be jointly derived via entailment from an ontology and inferences from rules. Nonetheless, the practical usefulness of MKNF has not always been clear, although recent work has formalized a general resolution-based method for querying MKNF when rules are taken to have the well-founded semantics, and the ontology is modeled by a general oracle. That work leaves open what algorithms should be used to relate the entailments of the ontology and the inferences of rules. In this paper we provide such algorithms, and describe the implementation of a query-driven system, CDF-Rules, for hybrid knowledge bases combining both (non-monotonic) rules under the well-founded semantics and a (monotonic) ontology, represented by a CDF Type-1 (ALQ) theory. To appear in Theory and Practice of Logic Programming (TPLP)