Goto

Collaborating Authors

 Emilia-Romagna


Multi-task Learning for Identification of Porcelain in Song and Yuan Dynasties

arXiv.org Artificial Intelligence

Chinese porcelain holds immense historical and cultural value, making its accurate classification essential for archaeological research and cultural heritage preservation. Traditional classification methods rely heavily on expert analysis, which is time-consuming, subjective, and difficult to scale. This paper explores the application of DL and transfer learning techniques to automate the classification of porcelain artifacts across four key attributes: dynasty, glaze, ware, and type. We evaluate four Convolutional Neural Networks (CNNs) - ResNet50, MobileNetV2, VGG16, and InceptionV3 - comparing their performance with and without pre-trained weights. Our results demonstrate that transfer learning significantly enhances classification accuracy, particularly for complex tasks like type classification, where models trained from scratch exhibit lower performance. MobileNetV2 and ResNet50 consistently achieve high accuracy and robustness across all tasks, while VGG16 struggles with more diverse classifications. We further discuss the impact of dataset limitations and propose future directions, including domain-specific pre-training, integration of attention mechanisms, explainable AI methods, and generalization to other cultural artifacts.


TerraQ: Spatiotemporal Question-Answering on Satellite Image Archives

arXiv.org Artificial Intelligence

TerraQ is a spatiotemporal question-answering engine for satellite image archives. It is a natural language processing system that is built to process requests for satellite images satisfying certain criteria. The requests can refer to image metadata and entities from a specialized knowledge base (e.g., the Emilia-Romagna region). With it, users can make requests like "Give me a hundred images of rivers near ports in France, with less than 20% snow coverage and more than 10% cloud coverage", thus making Earth Observation data more easily accessible, in-line with the current landscape of digital assistants.


GPTCast: a weather language model for precipitation nowcasting

arXiv.org Artificial Intelligence

This work introduces GPTCast, a generative deep-learning method for ensemble nowcast of radar-based precipitation, inspired by advancements in large language models (LLMs). We employ a GPT model as a forecaster to learn spatiotemporal precipitation dynamics using tokenized radar images. The tokenizer is based on a Quantized Variational Autoencoder featuring a novel reconstruction loss tailored for the skewed distribution of precipitation that promotes faithful reconstruction of high rainfall rates. The approach produces realistic ensemble forecasts and provides probabilistic outputs with accurate uncertainty estimation. The model is trained without resorting to randomness, all variability is learned solely from the data and exposed by model at inference for ensemble generation. We train and test GPTCast using a 6-year radar dataset over the Emilia-Romagna region in Northern Italy, showing superior results compared to state-of-the-art ensemble extrapolation methods.


On the external concurrency of current BDI frameworks for MAS

arXiv.org Artificial Intelligence

The execution of Belief-Desire-Intention (BDI) agents in a Multi-Agent System (MAS) can be practically implemented on top of low-level concurrency mechanisms that impact on efficiency, determinism, and reproducibility. We argue that developers should specify the MAS behaviour independently of the execution model, and choose or configure the concurrency model later on, according to the specific needs of their target domain, leaving the MAS specification unaffected. We identify patterns for mapping the agent execution over the underlying concurrency abstractions, and investigate which concurrency models are supported by some of the most commonly used BDI platforms. Although most frameworks support multiple concurrency models, we find that they mostly hide them under the hood, making them opaque to the developer, and actually limiting the possibility of fine-tuning the MAS.


Quantum Convolutional Neural Networks for the detection of Gamma-Ray Bursts in the AGILE space mission data

arXiv.org Artificial Intelligence

Quantum computing represents a cutting-edge frontier in artificial intelligence. It makes use of hybrid quantum-classical computation which tries to leverage quantum mechanic principles that allow us to use a different approach to deep learning classification problems. The work presented here falls within the context of the AGILE space mission, launched in 2007 by the Italian Space Agency. We implement different Quantum Convolutional Neural Networks (QCNN) that analyze data acquired by the instruments onboard AGILE to detect Gamma-Ray Bursts from sky maps or light curves. We use several frameworks such as TensorFlow-Quantum, Qiskit and Penny-Lane to simulate a quantum computer. We achieved an accuracy of 95.1% on sky maps with QCNNs, while the classical counterpart achieved 98.8% on the same data, using however hundreds of thousands more parameters.


Concurrency Model of BDI Programming Frameworks: Why Should We Control It?

arXiv.org Artificial Intelligence

Adopting the right concurrency model is essential, as it deeply impacts many aspects of the agent programming framework and We provide a taxonomy of concurrency models for BDI frameworks, the dynamics of all MASs leveraging it. In particular, the concurrency elicited by analysing state-of-the-art technologies, and aimed at model affects whether, and to what extent, multiple agents helping both BDI designers and developers in making informed can run at the same time, impacting performance and efficiency decisions.


PejorativITy: Disambiguating Pejorative Epithets to Improve Misogyny Detection in Italian Tweets

arXiv.org Artificial Intelligence

Misogyny is often expressed through figurative language. Some neutral words can assume a negative connotation when functioning as pejorative epithets. Disambiguating the meaning of such terms might help the detection of misogyny. In order to address such task, we present PejorativITy, a novel corpus of 1,200 manually annotated Italian tweets for pejorative language at the word level and misogyny at the sentence level. We evaluate the impact of injecting information about disambiguated words into a model targeting misogyny detection. In particular, we explore two different approaches for injection: concatenation of pejorative information and substitution of ambiguous words with univocal terms. Our experimental results, both on our corpus and on two popular benchmarks on Italian tweets, show that both approaches lead to a major classification improvement, indicating that word sense disambiguation is a promising preliminary step for misogyny detection. Furthermore, we investigate LLMs' understanding of pejorative epithets by means of contextual word embeddings analysis and prompting.


Google DeepMind's New AI Model Can Help Soccer Teams Take the Perfect Corner

WIRED

The most exciting young coach in soccer might not be at Bayer Leverkusen or Stade de Reims, or even Bologna FC. It might be at Google DeepMind. For the past few years, the search giant's artificial intelligence division has been working with Liverpool Football Club to bring AI to the world's most popular sport. In 2021, DeepMind researchers developed a model that could predict where players would hit a penalty based on their outfield position. In 2022, they developed one that analyzed video footage of games to predict where players would run next, even when they went off screen.


VATr++: Choose Your Words Wisely for Handwritten Text Generation

arXiv.org Artificial Intelligence

Styled Handwritten Text Generation (HTG) has received significant attention in recent years, propelled by the success of learning-based solutions employing GANs, Transformers, and, preliminarily, Diffusion Models. Despite this surge in interest, there remains a critical yet understudied aspect - the impact of the input, both visual and textual, on the HTG model training and its subsequent influence on performance. This study delves deeper into a cutting-edge Styled-HTG approach, proposing strategies for input preparation and training regularization that allow the model to achieve better performance and generalize better. These aspects are validated through extensive analysis on several different settings and datasets. Moreover, in this work, we go beyond performance optimization and address a significant hurdle in HTG research - the lack of a standardized evaluation protocol. In particular, we propose a standardization of the evaluation protocol for HTG and conduct a comprehensive benchmarking of existing approaches. By doing so, we aim to establish a foundation for fair and meaningful comparisons between HTG strategies, fostering progress in the field.


Wind speed super-resolution and validation: from ERA5 to CERRA via diffusion models

arXiv.org Artificial Intelligence

The Copernicus Regional Reanalysis for Europe, CERRA, is a high-resolution regional reanalysis dataset for the European domain. In recent years it has shown significant utility across various climate-related tasks, ranging from forecasting and climate change research to renewable energy prediction, resource management, air quality risk assessment, and the forecasting of rare events, among others. Unfortunately, the availability of CERRA is lagging two years behind the current date, due to constraints in acquiring the requisite external data and the intensive computational demands inherent in its generation. As a solution, this paper introduces a novel method using diffusion models to approximate CERRA downscaling in a data-driven manner, without additional informations. By leveraging the lower resolution ERA5 dataset, which provides boundary conditions for CERRA, we approach this as a super-resolution task. Focusing on wind speed around Italy, our model, trained on existing CERRA data, shows promising results, closely mirroring original CERRA data. Validation with in-situ observations further confirms the model's accuracy in approximating ground measurements.