Goto

Collaborating Authors

 Gujarat


Robot DOG makes an appearance at the Met Gala - dressed in a tuxedo and adorned with a 1,000-carat diamond leash

Daily Mail - Science & tech

At New York's Met Gala, guests are known for attention-grabbing outfits, from Katy Perry's human chandelier dress to Kim Kardashian's all-black body suit. But one attendant in particular has stolen the limelight this year – and he's not even human. Indian-American entrepreneur Mona Patel rocked up to the annual event on Monday night with an adorable robotic dachshund in tow. Vector the robo-dog, developed by scientists at MIT, has a 1,000-carat diamond-studded leash and his own cute little specially-fitted tuxedo. Powered by AI and equipped with sensors, Vector has customised movement patterns and'just the right amount of sass', Vogue India reports.


COMI-LINGUA: Expert Annotated Large-Scale Dataset for Multitask NLP in Hindi-English Code-Mixing

arXiv.org Artificial Intelligence

The rapid growth of digital communication has driven the widespread use of code-mixing, particularly Hindi-English, in multilingual communities. Existing datasets often focus on romanized text, have limited scope, or rely on synthetic data, which fails to capture realworld language nuances. Human annotations are crucial for assessing the naturalness and acceptability of code-mixed text. To address these challenges, We introduce COMI-LINGUA, the largest manually annotated dataset for code-mixed text, comprising 100,970 instances evaluated by three expert annotators in both Devanagari and Roman scripts. The dataset supports five fundamental NLP tasks: Language Identification, Matrix Language Identification, Part-of-Speech Tagging, Named Entity Recognition, and Translation. We evaluate LLMs on these tasks using COMILINGUA, revealing limitations in current multilingual modeling strategies and emphasizing the need for improved code-mixed text processing capabilities. COMI-LINGUA is publically availabe at: https://huggingface.co/datasets/LingoIITGN/COMI-LINGUA.


Real Time Monitoring and Forecasting of COVID 19 Cases using an Adjusted Holt based Hybrid Model embedded with Wavelet based ANN

arXiv.org Machine Learning

Since the inception of the SARS - CoV - 2 (COVID - 19) novel coronavirus, a lot of time and effort is being allocated to estimate the trajectory and possibly, forecast with a reasonable degree of accuracy, the number of cases, recoveries, and deaths due to the same. The model proposed in this paper is a mindful step in the same direction. The primary model in question is a Hybrid Holt's Model embedded with a Wavelet-based ANN. To test its forecasting ability, we have compared three separate models, the first, being a simple ARIMA model, the second, also an ARIMA model with a wavelet-based function, and the third, being the proposed model. We have also compared the forecast accuracy of this model with that of a modern day Vanilla LSTM recurrent neural network model. We have tested the proposed model on the number of confirmed cases (daily) for the entire country as well as 6 hotspot states. We have also proposed a simple adjustment algorithm in addition to the hybrid model so that daily and/or weekly forecasts can be meted out, with respect to the entirety of the country, as well as a moving window performance metric based on out-of-sample forecasts. In order to have a more rounded approach to the analysis of COVID-19 dynamics, focus has also been given to the estimation of the Basic Reproduction Number, $R_0$ using a compartmental epidemiological model (SIR). Lastly, we have also given substantial attention to estimating the shelf-life of the proposed model. It is obvious yet noteworthy how an accurate model, in this regard, can ensure better allocation of healthcare resources, as well as, enable the government to take necessary measures ahead of time.


Evaluating Fast Adaptability of Neural Networks for Brain-Computer Interface

arXiv.org Artificial Intelligence

Electroencephalography (EEG) classification is a versatile and portable technique for building non-invasive Brain-computer Interfaces (BCI). However, the classifiers that decode cognitive states from EEG brain data perform poorly when tested on newer domains, such as tasks or individuals absent during model training. Researchers have recently used complex strategies like Model-agnostic meta-learning (MAML) for domain adaptation. Nevertheless, there is a need for an evaluation strategy to evaluate the fast adaptability of the models, as this characteristic is essential for real-life BCI applications for quick calibration. We used motor movement and imaginary signals as input to Convolutional Neural Networks (CNN) based classifier for the experiments. Datasets with EEG signals typically have fewer examples and higher time resolution. Even though batch-normalization is preferred for Convolutional Neural Networks (CNN), we empirically show that layer-normalization can improve the adaptability of CNN-based EEG classifiers with not more than ten fine-tuning steps. In summary, the present work (i) proposes a simple strategy to evaluate fast adaptability, and (ii) empirically demonstrate fast adaptability across individuals as well as across tasks with simple transfer learning as compared to MAML approach.


VLSI Architectures of Forward Kinematic Processor for Robotics Applications

arXiv.org Artificial Intelligence

This paper aims to get a comprehensive review of current-day robotic computation technologies at VLSI architecture level. We studied several repots in the domain of robotic processor architecture. In this work, we focused on the forward kinematics architectures which consider CORDIC algorithms, VLSI circuits of WE DSP16 chip, parallel processing and pipelined architecture, and lookup table formula and FPGA processor. This study gives us an understanding of different implementation methods for forward kinematics. Our goal is to develop a forward kinematics processor with FPGA for real-time applications, requires a fast response time and low latency of these devices, useful for industrial automation where the processing speed plays a great role.


FESS Loss: Feature-Enhanced Spatial Segmentation Loss for Optimizing Medical Image Analysis

arXiv.org Artificial Intelligence

Medical image segmentation is a critical process in the field of medical imaging, playing a pivotal role in diagnosis, treatment, and research. It involves partitioning of an image into multiple regions, representing distinct anatomical or pathological structures. Conventional methods often grapple with the challenge of balancing spatial precision and comprehensive feature representation due to their reliance on traditional loss functions. To overcome this, we propose Feature-Enhanced Spatial Segmentation Loss (FESS Loss), that integrates the benefits of contrastive learning (which extracts intricate features, particularly in the nuanced domain of medical imaging) with the spatial accuracy inherent in the Dice loss. The objective is to augment both spatial precision and feature-based representation in the segmentation of medical images. FESS Loss signifies a notable advancement, offering a more accurate and refined segmentation process, ultimately contributing to heightened precision in the analysis of medical images. Further, FESS loss demonstrates superior performance in limited annotated data availability scenarios often present in the medical domain.


Boldly Going Where No Benchmark Has Gone Before: Exposing Bias and Shortcomings in Code Generation Evaluation

arXiv.org Artificial Intelligence

Motivated by the increasing popularity of code generation from human descriptions using large language models (LLMs), several benchmarks have been proposed to assess the capabilities of existing and emerging models. This study presents a large-scale human evaluation of HumanEval and MBPP, two widely used benchmarks for Python code generation, focusing on their diversity and difficulty. Our findings reveal a significant bias towards a limited number of programming concepts, with negligible or no representation of most concepts. Additionally, we identify a concerningly high proportion of easy programming questions, potentially leading to an overestimation of model performance on code generation tasks.


Explainable artificial intelligence approaches for brain-computer interfaces: a review and design space

arXiv.org Artificial Intelligence

This review paper provides an integrated perspective of Explainable Artificial Intelligence techniques applied to Brain-Computer Interfaces. BCIs use predictive models to interpret brain signals for various high-stake applications. However, achieving explainability in these complex models is challenging as it compromises accuracy. The field of XAI has emerged to address the need for explainability across various stakeholders, but there is a lack of an integrated perspective in XAI for BCI (XAI4BCI) literature. It is necessary to differentiate key concepts like explainability, interpretability, and understanding in this context and formulate a comprehensive framework. To understand the need of XAI for BCI, we pose six key research questions for a systematic review and meta-analysis, encompassing its purposes, applications, usability, and technical feasibility. We employ the PRISMA methodology -- preferred reporting items for systematic reviews and meta-analyses to review (n=1246) and analyze (n=84) studies published in 2015 and onwards for key insights. The results highlight that current research primarily focuses on interpretability for developers and researchers, aiming to justify outcomes and enhance model performance. We discuss the unique approaches, advantages, and limitations of XAI4BCI from the literature. We draw insights from philosophy, psychology, and social sciences. We propose a design space for XAI4BCI, considering the evolving need to visualize and investigate predictive model outcomes customised for various stakeholders in the BCI development and deployment lifecycle. This paper is the first to focus solely on reviewing XAI4BCI research articles. This systematic review and meta-analysis findings with the proposed design space prompt important discussions on establishing standards for BCI explanations, highlighting current limitations, and guiding the future of XAI in BCI.


Training Deep 3D Convolutional Neural Networks to Extract BSM Physics Parameters Directly from HEP Data: a Proof-of-Concept Study Using Monte Carlo Simulations

arXiv.org Artificial Intelligence

We report on a novel application of computer vision techniques to extract beyond the Standard Model (BSM) parameters directly from high energy physics (HEP) flavor data. We develop a method of transforming angular and kinematic distributions into "quasi-images" that can be used to train a convolutional neural network to perform regression tasks, similar to fitting. This contrasts with the usual classification functions performed using ML/AI in HEP. As a proof-of-concept, we train a 34-layer Residual Neural Network to regress on these images and determine the Wilson Coefficient $C_{9}$ in MC (Monte Carlo) simulations of $B \rightarrow K^{*}\mu^{+}\mu^{-}$ decays. The technique described here can be generalized and may find applicability across various HEP experiments and elsewhere.


Unlocking Model Insights: A Dataset for Automated Model Card Generation

arXiv.org Artificial Intelligence

Language models (LMs) are no longer restricted to ML community, and instruction-tuned LMs have led to a rise in autonomous AI agents. As the accessibility of LMs grows, it is imperative that an understanding of their capabilities, intended usage, and development cycle also improves. Model cards are a popular practice for documenting detailed information about an ML model. To automate model card generation, we introduce a dataset of 500 question-answer pairs for 25 ML models that cover crucial aspects of the model, such as its training configurations, datasets, biases, architecture details, and training resources. We employ annotators to extract the answers from the original paper. Further, we explore the capabilities of LMs in generating model cards by answering questions. Our initial experiments with ChatGPT-3.5, LLaMa, and Galactica showcase a significant gap in the understanding of research papers by these aforementioned LMs as well as generating factual textual responses. We posit that our dataset can be used to train models to automate the generation of model cards from paper text and reduce human effort in the model card curation process. The complete dataset is available on https://osf.io/hqt7p/?view_only=3b9114e3904c4443bcd9f5c270158d37