similarity


Kernels on Attributed Pointsets with Applications

Neural Information Processing Systems

This paper introduces kernels on attributed pointsets, which are sets of vectors embedded in an euclidean space. The embedding gives the notion of neighborhood, which is used to define positive semidefinite kernels on pointsets. Two novel kernels on neighborhoods are proposed, one evaluating the attribute similarity and the other evaluating shape similarity. Shape similarity function is motivated from spectral graph matching techniques. The kernels are tested on three real life applications: face recognition, photo album tagging, and shot annotation in video sequences, with encouraging results.


Bounding Performance Loss in Approximate MDP Homomorphisms

Neural Information Processing Systems

We define a metric for measuring behavior similarity between states in a Markov decision process (MDP), in which action similarity is taken into account. We show that the kernel of our metric corresponds exactly to the classes of states defined by MDP homomorphisms (Ravindran \& Barto, 2003). We prove that the difference in the optimal value function of different states can be upper-bounded by the value of this metric, and that the bound is tighter than that provided by bisimulation metrics (Ferns et al. 2004, 2005). Our results hold both for discrete and for continuous actions. We provide an algorithm for constructing approximate homomorphisms, by using this metric to identify states that can be grouped together, as well as actions that can be matched.


Modeling human function learning with Gaussian processes

Neural Information Processing Systems

Accounts of how people learn functional relationships between continuous variables have tended to focus on two possibilities: that people are estimating explicit functions, or that they are simply performing associative learning supported by similarity. We provide a rational analysis of function learning, drawing on work on regression in machine learning and statistics. Using the equivalence of Bayesian linear regression and Gaussian processes, we show that learning explicit rules and using similarity can be seen as two views of one solution to this problem. We use this insight to define a Gaussian process model of human function learning that combines the strengths of both approaches. Papers published at the Neural Information Processing Systems Conference.


An Online Algorithm for Large Scale Image Similarity Learning

Neural Information Processing Systems

Learning a measure of similarity between pairs of objects is a fundamental problem in machine learning. It stands in the core of classification methods like kernel machines, and is particularly useful for applications like searching for images that are similar to a given image or finding videos that are relevant to a given video. In these tasks, users look for objects that are not only visually similar but also semantically related to a given object. Unfortunately, current approaches for learning similarity may not scale to large datasets with high dimensionality, especially when imposing metric constraints on the learned similarity. We describe OASIS, a method for learning pairwise similarity that is fast and scales linearly with the number of objects and the number of non-zero features.


The Perturbed Variation

Neural Information Processing Systems

We introduce a new discrepancy score between two distributions that gives an indication on their \emph{similarity}. While much research has been done to determine if two samples come from exactly the same distribution, much less research considered the problem of determining if two finite samples come from similar distributions. The new score gives an intuitive interpretation of similarity; it optimally perturbs the distributions so that they best fit each other. The score is defined between distributions, and can be efficiently estimated from samples. We provide convergence bounds of the estimated score, and develop hypothesis testing procedures that test if two data sets come from similar distributions.


Clustering by Nonnegative Matrix Factorization Using Graph Random Walk

Neural Information Processing Systems

Nonnegative Matrix Factorization (NMF) is a promising relaxation technique for clustering analysis. However, conventional NMF methods that directly approximate the pairwise similarities using the least square error often yield mediocre performance for data in curved manifolds because they can capture only the immediate similarities between data samples. Here we propose a new NMF clustering method which replaces the approximated matrix with its smoothed version using random walk. Our method can thus accommodate farther relationships between data samples. Furthermore, we introduce a novel regularization in the proposed objective function in order to improve over spectral clustering.


Learning to Agglomerate Superpixel Hierarchies

Neural Information Processing Systems

The function that evaluates similarity is traditionally hand- designed, but there has been recent interest in supervised or semisupervised settings in which ground-truth clustered data is available for training. Here we show how to train a similarity function by regarding it as the action-value function of a reinforcement learning problem. We apply this general method to segment images by clustering superpixels, an application that we call Learning to Agglomerate Superpixel Hierarchies (LASH). When applied to a challenging dataset of brain images from serial electron microscopy, LASH dramatically improved segmentation accuracy when clustering supervoxels generated by state of the boundary detection algorithms. The naive strategy of directly training only supervoxel similarities and applying single linkage clustering produced less improvement.


Revisiting (\epsilon, \gamma, \tau)-similarity learning for domain adaptation

Neural Information Processing Systems

Similarity learning is an active research area in machine learning that tackles the problem of finding a similarity function tailored to an observable data sample in order to achieve efficient classification. This learning scenario has been generally formalized by the means of a $(\epsilon, \gamma, \tau)-$good similarity learning framework in the context of supervised classification and has been shown to have strong theoretical guarantees. In this paper, we propose to extend the theoretical analysis of similarity learning to the domain adaptation setting, a particular situation occurring when the similarity is learned and then deployed on samples following different probability distributions. We give a new definition of an $(\epsilon, \gamma)-$good similarity for domain adaptation and prove several results quantifying the performance of a similarity function on a target domain after it has been trained on a source domain. We particularly show that if the source distribution dominates the target one, then principally new domain adaptation learning bounds can be proved.


Efficient Approximation Algorithms for Strings Kernel Based Sequence Classification

Neural Information Processing Systems

Sequence classification algorithms, such as SVM, require a definition of distance (similarity) measure between two sequences. A commonly used notion of similarity is the number of matches between k-mers (k-length subsequences) in the two sequences. Extending this definition, by considering two k-mers to match if their distance is at most m, yields better classification performance. This, however, makes the problem computationally much more complex. Known algorithms to compute this similarity have computational complexity that render them applicable only for small values of k and m.


The Power of Asymmetry in Binary Hashing

Neural Information Processing Systems

When approximating binary similarity using the hamming distance between short binary hashes, we shown that even if the similarity is symmetric, we can have shorter and more accurate hashes by using two distinct code maps. Papers published at the Neural Information Processing Systems Conference.