Goto

Collaborating Authors

semantic web


Foundations of Semantic Web Technologies - Programmer Books

#artificialintelligence

With more substantial funding from research organizations and industry, numerous large-scale applications, and recently developed technologies, the Semantic Web is quickly emerging as a well-recognized and important area of computer science. While Semantic Web technologies are still rapidly evolving, Foundations of Semantic Web Technologies focuses on the established foundations in this area that have become relatively stable over time. It thoroughly covers basic introductions and intuitions, technical details, and formal foundations. The book concentrates on Semantic Web technologies standardized by the World Wide Web Consortium: RDF and SPARQL enable data exchange and querying, RDFS and OWL provide expressive ontology modeling, and RIF supports rule-based modeling. The text also describes methods for specifying, querying, and reasoning with ontological information.


Understanding Semantic web technologies

#artificialintelligence

In Alex Garland's 2014 sci-fi thriller, when Caleb the plot's anti-hero first meets Ava, an AI-driven humanoid, the first thing he does to test her intelligence is to engage her in a conversation. "So we need to break the ice. Do you know what I mean by that?", he asks. He tests her further, "what do I mean?". "Overcome initial social awkwardness", she quips.


The CIDOC Conceptual Reference Module: An Ontological Approach to Semantic Interoperability of Metadata

AI Magazine

This article presents the methodology that has been successfully used over the past seven years by an interdisciplinary team to create the International Committee for Documentation of the International Council of Museums (CIDOC) CONCEPTUAL REFERENCE MODEL (CRM), a high-level ontology to enable information integration for cultural heritage data and their correlation with library and archive information. The CIDOC CRM is now in the process to become an International Organization for Standardization (ISO) standard. This article justifies in detail the methodology and design by functional requirements and gives examples of its contents. The CIDOC CRM analyzes the common conceptualizations behind data and metadata structures to support data transformation, mediation, and merging. It is argued that such ontologies are propertycentric, in contrast to terminological systems, and should be built with different methodologies.


Ontology Translation for Interoperability Among Semantic Web Services

AI Magazine

Research on semantic web services promises greater interoperability among software agents and web services by enabling content-based automated service discovery and interaction and by utilizing . Although this is to be based on use of shared ontologies published on the semantic web, services produced and described by different developers may well use different, perhaps partly overlapping, sets of ontologies. Interoperability will depend on ontology mappings and architectures supporting the associated translation processes. The question we ask is, does the traditional approach of introducing mediator agents to translate messages between requestors and services work in such an open environment? This article reviews some of the processing assumptions that were made in the development of the semantic web service modeling ontology OWL-S and argues that, as a practical matter, the translation function cannot always be isolated in mediators.



Defeasible reasoning in Description Logics: an overview on DL^N

arXiv.org Artificial Intelligence

In complex areas such as law and science, knowledge has been in centuries formulated by primarily describing prototypical instances and properties, and then by overriding the general theory to include possible exceptions. For example, many laws are formulated by adding new norms that, in case of conflicts, may partially or completely override the previous ones. Similarly, biologists have been incrementally introducing exceptions to general properties. For instance, the human heart is usually located in the left-hand half of the thorax. Still there are exceptional individuals, with so-called situs inversus, whose heart is located on the opposite side. Eukariotic cells are those with a proper nucleus, by definition. Still they comprise mammalian red blood cells, that in their mature stage have no nucleus.


A Semantic Web Framework for Automated Smart Assistants: COVID-19 Case Study

arXiv.org Artificial Intelligence

COVID-19 pandemic elucidated that knowledge systems will be instrumental in cases where accurate information needs to be communicated to a substantial group of people with different backgrounds and technological resources. However, several challenges and obstacles hold back the wide adoption of virtual assistants by public health departments and organizations. This paper presents the Instant Expert, an open-source semantic web framework to build and integrate voice-enabled smart assistants (i.e. chatbots) for any web platform regardless of the underlying domain and technology. The component allows non-technical domain experts to effortlessly incorporate an operational assistant with voice recognition capability into their websites. Instant Expert is capable of automatically parsing, processing, and modeling Frequently Asked Questions pages as an information resource as well as communicating with an external knowledge engine for ontology-powered inference and dynamic data utilization. The presented framework utilizes advanced web technologies to ensure reusability and reliability, and an inference engine for natural language understanding powered by deep learning and heuristic algorithms. A use case for creating an informatory assistant for COVID-19 based on the Centers for Disease Control and Prevention (CDC) data is presented to demonstrate the framework's usage and benefits.


Revealing Secrets in SPARQL Session Level

arXiv.org Artificial Intelligence

Based on Semantic Web technologies, knowledge graphs help users to discover information of interest by using live SPARQL services. Answer-seekers often examine intermediate results iteratively and modify SPARQL queries repeatedly in a search session. In this context, understanding user behaviors is critical for effective intention prediction and query optimization. However, these behaviors have not yet been researched systematically at the SPARQL session level. This paper reveals the secrets of session-level user search behaviors by conducting a comprehensive investigation over massive real-world SPARQL query logs. In particular, we thoroughly assess query changes made by users w.r.t. structural and data-driven features of SPARQL queries. To illustrate the potentiality of our findings, we employ a proof-of-concept model to predict user intentions, i.e., future directions of the given session, and give reformulation suggestions based on the predicted intention. We hope the results presented here will help to devise efficient SPARQL caching, auto-completion, query suggestion, approximation, and relaxation techniques in the future.


Formalizing Integration Patterns with Multimedia Data (Extended Version)

arXiv.org Artificial Intelligence

The previous works on formalizing enterprise application integration (EAI) scenarios showed an emerging need for setting up formal foundations for integration patterns, the EAI building blocks, in order to facilitate the model-driven development and ensure its correctness. So far, the formalization requirements were focusing on more "conventional" integration scenarios, in which control-flow, transactional persistent data and time aspects were considered. However, none of these works took into consideration another arising EAI trend that covers social and multimedia computing. In this work we propose a Petri net-based formalism that addresses requirements arising from the multimedia domain. We also demonstrate realizations of one of the most frequently used multimedia patterns and discuss which implications our formal proposal may bring into the area of the multimedia EAI development.


The Semantic Zoo - Smart Data Hubs, Knowledge Graphs and Data Catalogs

#artificialintelligence

Sometimes, you can enter into a technology too early. The groundwork for semantics was laid down in the late 1990s and early 2000s, with Tim Berners-Lee's stellar Semantic Web article, debuting in Scientific American in 2004, seen by many as the movement's birth. Yet many early participants in the field of semantics discovered a harsh reality: computer systems were too slow to handle the intense indexing requirements the technology needed, the original specifications and APIs failed to handle important edge cases, and, perhaps most importantly, the number of real world use cases where semantics made sense were simply not at a large enough scope; they could easily be met by existing approaches and technology. Semantics faded around 2008, echoing the pattern of the Artificial Intelligence Winter of the 1970s. JSON was all the rage, then mobile apps, big data came on the scene even as Javascript underwent a radical transformation, and all of a sudden everyone wanted to be a data scientist (until they discovered the fact that data science was mostly math).