Goto

Collaborating Authors

representation scheme


The Ambiguous World of Emotion Representation

arXiv.org Artificial Intelligence

Artificial intelligence and machine learning systems have demonstrated huge improvements and human-level parity in a range of activities, including speech recognition, face recognition and speaker verification. However, these diverse tasks share a key commonality that is not true in affective computing: the ground truth information that is inferred can be unambiguously represented. This observation provides some hints as to why affective computing, despite having attracted the attention of researchers for years, may not still be considered a mature field of research. A key reason for this is the lack of a common mathematical framework to describe all the relevant elements of emotion representations. This paper proposes the AMBiguous Emotion Representation (AMBER) framework to address this deficiency. AMBER is a unified framework that explicitly describes categorical, numerical and ordinal representations of emotions, including time varying representations. In addition to explaining the core elements of AMBER, the paper also discusses how some of the commonly employed emotion representation schemes can be viewed through the AMBER framework, and concludes with a discussion of how the proposed framework can be used to reason about current and future affective computing systems.


Multi-modal space structure: a new kind of latent correlation for multi-modal entity resolution

arXiv.org Artificial Intelligence

Multi-modal data is becoming more common than before because of big data issues. Finding the semantically equal or similar objects from different data sources(called entity resolution) is one of the heart problem of multi-modal task. Current models for solving this problem usually needs much paired data to find the latent correlation between multi-modal data, which is of high cost. A new kind latent correlation is proposed in this article. With the correlation, multi-modal objects can be uniformly represented in a commonly shard space. A classifying based model is designed for multi-modal entity resolution task. With the proposed method, the demand of training data can be decreased much.


Moral Decision Making Frameworks for Artificial Intelligence

AAAI Conferences

The generality of decision and game theory has enabled domain-independent progress in AI research. For example, a better algorithm for finding good policies in (PO)MDPs can be instantly used in a variety of applications. But such a general theory is lacking when it comes to moral decision making. For AI applications with a moral component, are we then forced to build systems based on many ad-hoc rules? In this paper we discuss possible ways to avoid this conclusion.


Moral Decision Making Frameworks for Artificial Intelligence

AAAI Conferences

The generality of decision and game theory has enabled domain-independent progress in AI research. For example, a better algorithm for finding good policies in (PO)MDPs can be instantly used in a variety of applications. But such a general theory is lacking when it comes to moral decision making. For AI applications with a moral component, are we then forced to build systems based on many ad-hoc rules? In this paper we discuss possible ways to avoid this conclusion.


Coupled Interdependent Attribute Analysis on Mixed Data

AAAI Conferences

In the real-world applications, heterogeneous interdependent attributes that consist of both discrete and numerical variables can be observed ubiquitously. The usual representation of these data sets is an information table, assuming the independence of attributes. However, very often, they are actually interdependent on one another, either explicitly or implicitly. Limited research has been conducted in analyzing such attribute interactions, which causes the analysis results to be more local than global. This paper proposes the coupled heterogeneous attribute analysis to capture the interdependence among mixed data by addressing coupling context and coupling weights in unsupervised learning. Such global couplings integrate the interactions within discrete attributes, within numerical attributes and across them to form the coupled representation for mixed type objects based on dimension conversion and feature selection. This work makes one step forward towards explicitly modeling the interdependence of heterogeneous attributes among mixed data, verified by the applications in data structure analysis, data clustering evaluation, and density comparison. Substantial experiments on 12 UCI data sets show that our approach can effectively capture the global couplings of heterogeneous attributes and outperforms the state-of-the-art methods, supported by statistical analysis.


A Myriad of Automation Serving a Unified Reflective Safe/Moral Will

AAAI Conferences

We propose a unified closed identity with a pyramid-shaped hierarchy of representation schemes rising from a myriad of tight world mappings through a layer with a relatively small set of properly integrated data structures and algorithms to a single safe/moral command-and-control representation of goals, values and priorities.


Coupled Attribute Analysis on Numerical Data

AAAI Conferences

The usual representation of quantitative data is to formalize it as an information table, which assumes the independence of attributes. In real-world data, attributes are more or less interacted and coupled via explicit or implicit relationships. Limited research has been conducted on analyzing such attribute interactions, which only describe a local picture of attribute couplings in an implicit way. This paper proposes a framework of the coupled attribute analysis to capture the global dependency of continuous attributes. Such global couplings integrate the intra-coupled interaction within an attribute (i.e. the correlations between attributes and their own powers) and inter-coupled interaction among different attributes (i.e. the correlations between attributes and the powers of others) to form a coupled representation for numerical objects by the Taylor-like expansion. This work makes one step forward towards explicitly addressing the global interactions of continuous attributes, verified by the applications in data structure analysis, data clustering, and data classification. Substantial experiments on 13 UCI data sets demonstrate that the coupled representation can effectively capture the global couplings of attributes and outperforms the traditional way, supported by statistical analysis.


Computing Game-Theoretic Solutions and Applications to Security

AAAI Conferences

The multiagent systems community has adopted game theory as a framework for the design of systems of multiple self-interested agents. For this to be effective, efficient algorithms must be designed to compute the solutions that game theory prescribes. In this paper, I summarize some of the state of the art on this topic, focusing particularly on how this line of work has contributed to several highly visible deployed security applications, developed at the University of Southern California.


Fuzzy Dynamical Genetic Programming in XCSF

arXiv.org Artificial Intelligence

A number of representation schemes have been presented for use within Learning Classifier Systems, ranging from binary encodings to Neural Networks, and more recently Dynamical Genetic Programming (DGP). This paper presents results from an investigation into using a fuzzy DGP representation within the XCSF Learning Classifier System. In particular, asynchronous Fuzzy Logic Networks are used to represent the traditional condition-action production system rules. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such fuzzy dynamical systems within XCSF to solve several well-known continuous-valued test problems.


Concise Characteristic Function Representations in Coalitional Games Based on Agent Types

AAAI Conferences

Forming effective coalitions is a major research challenge in AI and multi-agent systems (MAS). Thus, coalitional games, including Coalition Structure Generation (CSG), have been attracting considerable attention from the AI research community. Traditionally, the input of a coalitional game is a black-box function called a characteristic function. A range of previous studies have found that many problems in coalitional games tend to be computationally intractable when the input is a black-box function. Recently, several concise representation schemes for a characteristic function have been proposed. Although these schemes are effective for reducing the representation size, most problems remain computationally intractable. In this paper, we develop a new concise representation scheme based on the idea of agent types. Intuitively, a type represents a set of agents, which are recognized as having the same contribution. This representation can be exponentially more concise than existing concise representation schemes. Furthermore, this idea can be used in conjunction with existing schemes to further reduce the representation size. Moreover, we show that most of the problems in coalitional games, including CSG, can be solved in polynomial time in the number of agents, assuming the number of possible types is fixed.