Goto

Collaborating Authors

ontology


Ontology In AI: A Common Vocabulary To Accelerate Information Sharing

#artificialintelligence

Ontology is a branch of philosophy dealing with the study of being and existence. However, in a practical business setting, ontology refers to the architecture that binds different sources of information and involves interconnecting data from multiple domains by tagging and categorising. It could be looked at as a means of resolving organisational differences between databases to enhance integration. In AI, ontology refers to a shared vocabulary for researchers. It includes machine-interpretable definitions of basic concepts and the relationships between them.


ARTICHAIN

#artificialintelligence

The first automated market maker (AMM) that integrates Yield Farming with Artificial Intelligence (AI). Artichain is a decentralized finance (DeFi) platform that runs on Binance Smart Chain (BSC) with incorporated features that easily let you earn tokens. Gain access to trade, earn and win big on the platform through ArtiChain Swap. ArtiChain Swap allows users to exchange their digital assets for an equivalent portion in tokens either through staking, farming or liquidity pool, thus increasing their digital assets value. Artichain Swap exchange to allow you trade against a liquidity pool and receive extra income gained from the trading fees.


Human Activity Recognition Models in Ontology Networks

arXiv.org Artificial Intelligence

We present Arianna+, a framework to design networks of ontologies for representing knowledge enabling smart homes to perform human activity recognition online. In the network, nodes are ontologies allowing for various data contextualisation, while edges are general-purpose computational procedures elaborating data. Arianna+ provides a flexible interface between the inputs and outputs of procedures and statements, which are atomic representations of ontological knowledge. Arianna+ schedules procedures on the basis of events by employing logic-based reasoning, i.e., by checking the classification of certain statements in the ontologies. Each procedure involves input and output statements that are differently contextualised in the ontologies based on specific prior knowledge. Arianna+ allows to design networks that encode data within multiple contexts and, as a reference scenario, we present a modular network based on a spatial context shared among all activities and a temporal context specialised for each activity to be recognised. In the paper, we argue that a network of small ontologies is more intelligible and has a reduced computational load than a single ontology encoding the same knowledge. Arianna+ integrates in the same architecture heterogeneous data processing techniques, which may be better suited to different contexts. Thus, we do not propose a new algorithmic approach to activity recognition, instead, we focus on the architectural aspects for accommodating logic-based and data-driven activity models in a context-oriented way. Also, we discuss how to leverage data contextualisation and reasoning for activity recognition, and to support an iterative development process driven by domain experts.


XAI-KG: knowledge graph to support XAI and decision-making in manufacturing

arXiv.org Artificial Intelligence

The increasing adoption of artificial intelligence requires accurate forecasts and means to understand the reasoning of artificial intelligence models behind such a forecast. Explainable Artificial Intelligence (XAI) aims to provide cues for why a model issued a certain prediction. Such cues are of utmost importance to decision-making since they provide insights on the features that influenced most certain forecasts and let the user decide if the forecast can be trusted. Though many techniques were developed to explain black-box models, little research was done on assessing the quality of those explanations and their influence on decision-making. We propose an ontology and knowledge graph to support collecting feedback regarding forecasts, forecast explanations, recommended decision-making options, and user actions. This way, we provide means to improve forecasting models, explanations, and recommendations of decision-making options.


Large-scale Taxonomy Induction Using Entity and Word Embeddings

arXiv.org Artificial Intelligence

Taxonomies are an important ingredient of knowledge organization, and serve as a backbone for more sophisticated knowledge representations in intelligent systems, such as formal ontologies. However, building taxonomies manually is a costly endeavor, and hence, automatic methods for taxonomy induction are a good alternative to build large-scale taxonomies. In this paper, we propose TIEmb, an approach for automatic unsupervised class subsumption axiom extraction from knowledge bases using entity and text embeddings. We apply the approach on the WebIsA database, a database of subsumption relations extracted from the large portion of the World Wide Web, to extract class hierarchies in the Person and Place domain.


Semantic Modeling for Food Recommendation Explanations

arXiv.org Artificial Intelligence

With the increased use of AI methods to provide recommendations in the health, specifically in the food dietary recommendation space, there is also an increased need for explainability of those recommendations. Such explanations would benefit users of recommendation systems by empowering them with justifications for following the system's suggestions. We present the Food Explanation Ontology (FEO) that provides a formalism for modeling explanations to users for food-related recommendations. FEO models food recommendations, using concepts from the explanation domain to create responses to user questions about food recommendations they receive from AI systems such as personalized knowledge base question answering systems. FEO uses a modular, extensible structure that lends itself to a variety of explanations while still preserving important semantic details to accurately represent explanations of food recommendations. In order to evaluate this system, we used a set of competency questions derived from explanation types present in literature that are relevant to food recommendations. Our motivation with the use of FEO is to empower users to make decisions about their health, fully equipped with an understanding of the AI recommender systems as they relate to user questions, by providing reasoning behind their recommendations in the form of explanations.


Ontology-based Feature Selection: A Survey

arXiv.org Artificial Intelligence

The Semantic Web emerged as an extension to the traditional Web, towards adding meaning to a distributed Web of structured and linked data. At its core, the concept of ontology provides the means to semantically describe and structure information and data and expose it to software and human agents in a machine and human-readable form. For software agents to be realized, it is crucial to develop powerful artificial intelligence and machine learning techniques, able to extract knowledge from information and data sources and represent it in the underlying ontology. This survey aims to provide insight into key aspects of ontology-based knowledge extraction, from various sources such as text, images, databases and human expertise, with emphasis on the task of feature selection. First, some of the most common classification and feature selection algorithms are briefly presented. Then, selected methodologies, which utilize ontologies to represent features and perform feature selection and classification, are described. The presented examples span diverse application domains, e.g., medicine, tourism, mechanical and civil engineering, and demonstrate the feasibility and applicability of such methods.


Statistics versus Machine Learning: should they really be opposed?

#artificialintelligence

This "seemingly" old debate deserves to be revisited with fresh perspective. Even though the field of application is fairly recent, the basic methods used in Data Science are for the most part some forty years old now. To recall, the two main branches concerned are statistics on the one hand, and machine learning on the other, to which I would add a third branch that consists of what could be called "business ontologies" i.e. "structured sets of terms and concepts representing business know-how or a field of application" (Wikipedia). We can notice that some people are absorbed by the versus debate, comparing the statistical and machine learning approaches, and their efficiency, ROI and cost within the context of predictive applications (predictive marketing, Digital Marketing, customer knowledge, etc.). This debate is by no means a new one in the sense that the two "schools" sprang from two different intellectual trends.


Document Structure aware Relational Graph Convolutional Networks for Ontology Population

arXiv.org Artificial Intelligence

Ontologies comprising of concepts, their attributes, and relationships, form the quintessential backbone of many knowledge based AI systems. These systems manifest in the form of question-answering or dialogue in number of business analytics and master data management applications. While there have been efforts towards populating domain specific ontologies, we examine the role of document structure in learning ontological relationships between concepts in any document corpus. Inspired by ideas from hypernym discovery and explainability, our method performs about 15 points more accurate than a stand-alone R-GCN model for this task.


Knowledge Triggering, Extraction and Storage via Human-Robot Verbal Interaction

arXiv.org Artificial Intelligence

This article describes a novel approach to expand in run-time the knowledge base of an Artificial Conversational Agent. A technique for automatic knowledge extraction from the user's sentence and four methods to insert the new acquired concepts in the knowledge base have been developed and integrated into a system that has already been tested for knowledge-based conversation between a social humanoid robot and residents of care homes. The run-time addition of new knowledge allows overcoming some limitations that affect most robots and chatbots: the incapability of engaging the user for a long time due to the restricted number of conversation topics. The insertion in the knowledge base of new concepts recognized in the user's sentence is expected to result in a wider range of topics that can be covered during an interaction, making the conversation less repetitive. Two experiments are presented to assess the performance of the knowledge extraction technique, and the efficiency of the developed insertion methods when adding several concepts in the Ontology.