Machine learning in medicine: Addressing ethical challenges


This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: The authors received no specific funding for this work. Competing interests: I have read the journal's policy and the authors of this manuscript have the following competing interests: EV has received speaking fees from SwissRe, Novartis R&D Academy, and Google Netherlands. IGC served as a consultant for Otsuka Pharmaceuticals advising on the use of digital medicine for its Abilify MyCite product. IGC is supported by the Collaborative Research Program for Biomedical Innovation Law, which is a scientifically independent collaborative research program supported by Novo Nordisk Foundation.

A Deep Choice Model

AAAI Conferences

Human choice is complex in two ways. First, human choice often shows complex dependency on available alternatives. Second, human choice is often made after examining complex items such as images. The recently proposed choice model based on the restricted Boltzmann machine (RBM choice model) has been proved to represent three typical phenomena of human choice, which addresses the first complexity. We extend the RBM choice model to a deep choice model (DCM) to deal with the features of items, which are ignored in the RBM choice model. We then use deep learning to extract latent features from images and plug those latent features as input to the DCM. Our experiments show that the DCM adequately learns the choice that involves both of the two complexities in human choice.