Goto

Collaborating Authors

fixmatch


Deep Reference Priors: What is the best way to pretrain a model?

arXiv.org Machine Learning

What is the best way to exploit extra data -- be it unlabeled data from the same task, or labeled data from a related task -- to learn a given task? This paper formalizes the question using the theory of reference priors. Reference priors are objective, uninformative Bayesian priors that maximize the mutual information between the task and the weights of the model. Such priors enable the task to maximally affect the Bayesian posterior, e.g., reference priors depend upon the number of samples available for learning the task and for very small sample sizes, the prior puts more probability mass on low-complexity models in the hypothesis space. This paper presents the first demonstration of reference priors for medium-scale deep networks and image-based data. We develop generalizations of reference priors and demonstrate applications to two problems. First, by using unlabeled data to compute the reference prior, we develop new Bayesian semi-supervised learning methods that remain effective even with very few samples per class. Second, by using labeled data from the source task to compute the reference prior, we develop a new pretraining method for transfer learning that allows data from the target task to maximally affect the Bayesian posterior. Empirical validation of these methods is conducted on image classification datasets.


Contrastive Regularization for Semi-Supervised Learning

arXiv.org Machine Learning

Consistency regularization on label predictions becomes a fundamental technique in semi-supervised learning, but it still requires a large number of training iterations for high performance. In this study, we analyze that the consistency regularization restricts the propagation of labeling information due to the exclusion of samples with unconfident pseudo-labels in the model updates. Then, we propose contrastive regularization to improve both efficiency and accuracy of the consistency regularization by well-clustered features of unlabeled data. In specific, after strongly augmented samples are assigned to clusters by their pseudo-labels, our contrastive regularization updates the model so that the features with confident pseudo-labels aggregate the features in the same cluster, while pushing away features in different clusters. As a result, the information of confident pseudo-labels can be effectively propagated into more unlabeled samples during training by the well-clustered features. On benchmarks of semi-supervised learning tasks, our contrastive regularization improves the previous consistency-based methods and achieves state-of-the-art results, especially with fewer training iterations. Our method also shows robust performance on open-set semi-supervised learning where unlabeled data includes out-of-distribution samples.


Dash: Semi-Supervised Learning with Dynamic Thresholding

arXiv.org Machine Learning

While semi-supervised learning (SSL) has received tremendous attentions in many machine learning tasks due to its successful use of unlabeled data, existing SSL algorithms use either all unlabeled examples or the unlabeled examples with a fixed high-confidence prediction during the training progress. However, it is possible that too many correct/wrong pseudo labeled examples are eliminated/selected. In this work we develop a simple yet powerful framework, whose key idea is to select a subset of training examples from the unlabeled data when performing existing SSL methods so that only the unlabeled examples with pseudo labels related to the labeled data will be used to train models. The selection is performed at each updating iteration by only keeping the examples whose losses are smaller than a given threshold that is dynamically adjusted through the iteration. Our proposed approach, Dash, enjoys its adaptivity in terms of unlabeled data selection and its theoretical guarantee. Specifically, we theoretically establish the convergence rate of Dash from the view of non-convex optimization. Finally, we empirically demonstrate the effectiveness of the proposed method in comparison with state-of-the-art over benchmarks.


Credal Self-Supervised Learning

arXiv.org Machine Learning

Self-training is an effective approach to semi-supervised learning. The key idea is to let the learner itself iteratively generate "pseudo-supervision" for unlabeled instances based on its current hypothesis. In combination with consistency regularization, pseudo-labeling has shown promising performance in various domains, for example in computer vision. To account for the hypothetical nature of the pseudo-labels, these are commonly provided in the form of probability distributions. Still, one may argue that even a probability distribution represents an excessive level of informedness, as it suggests that the learner precisely knows the ground-truth conditional probabilities. In our approach, we therefore allow the learner to label instances in the form of credal sets, that is, sets of (candidate) probability distributions. Thanks to this increased expressiveness, the learner is able to represent uncertainty and a lack of knowledge in a more flexible and more faithful manner. To learn from weakly labeled data of that kind, we leverage methods that have recently been proposed in the realm of so-called superset learning. In an exhaustive empirical evaluation, we compare our methodology to state-of-the-art self-supervision approaches, showing competitive to superior performance especially in low-label scenarios incorporating a high degree of uncertainty.


Semi-Supervised Domain Generalization with Stochastic StyleMatch

arXiv.org Artificial Intelligence

Most existing research on domain generalization assumes source data gathered from multiple domains are fully annotated. However, in real-world applications, we might have only a few labels available from each source domain due to high annotation cost, along with abundant unlabeled data that are much easier to obtain. In this work, we investigate semi-supervised domain generalization (SSDG), a more realistic and practical setting. Our proposed approach, StyleMatch, is inspired by FixMatch, a state-of-the-art semi-supervised learning method based on pseudo-labeling, with several new ingredients tailored to solve SSDG. Specifically, 1) to mitigate overfitting in the scarce labeled source data while improving robustness against noisy pseudo labels, we introduce stochastic modeling to the classifier's weights, seen as class prototypes, with Gaussian distributions. 2) To enhance generalization under domain shift, we upgrade FixMatch's two-view consistency learning paradigm based on weak and strong augmentations to a multi-view version with style augmentation as the third complementary view. To provide a comprehensive study and evaluation, we establish two SSDG benchmarks, which cover a wide range of strong baseline methods developed in relevant areas including domain generalization and semi-supervised learning. Extensive experiments demonstrate that StyleMatch achieves the best out-of-distribution generalization performance in the low-data regime. We hope our approach and benchmarks can pave the way for future research on data-efficient and generalizable learning systems.


A Theory of Label Propagation for Subpopulation Shift

arXiv.org Artificial Intelligence

The recent success of supervised deep learning is built upon two crucial cornerstones: That the training and test data are drawn from an identical distribution, and that representative labeled data are available for training. However, in real-world applications, labeled data drawn from the same distribution as test data are usually unavailable. Domain adaptation (Quionero-Candela et al., 2009; Saenko et al., 2010) suggests a way to overcome this challenge by transferring the knowledge of labeled data from a source domain to the target domain. Without further assumptions, the transferability of information is not possible. Existing theoretical works have investigated suitable assumptions that can provide learning guarantees. Many of the works are based on the covariate shift assumption (Heckman, 1979; Shimodaira, 2000), which states that the conditional distribution of the labels (given the input x) is invariant across domains, i.e., p


Sinkhorn Label Allocation: Semi-Supervised Classification via Annealed Self-Training

arXiv.org Machine Learning

Self-training is a standard approach to semi-supervised learning where the learner's own predictions on unlabeled data are used as supervision during training. In this paper, we reinterpret this label assignment process as an optimal transportation problem between examples and classes, wherein the cost of assigning an example to a class is mediated by the current predictions of the classifier. This formulation facilitates a practical annealing strategy for label assignment and allows for the inclusion of prior knowledge on class proportions via flexible upper bound constraints. The solutions to these assignment problems can be efficiently approximated using Sinkhorn iteration, thus enabling their use in the inner loop of standard stochastic optimization algorithms. We demonstrate the effectiveness of our algorithm on the CIFAR-10, CIFAR-100, and SVHN datasets in comparison with FixMatch, a state-of-the-art self-training algorithm. Additionally, we elucidate connections between our proposed algorithm and existing confidence thresholded self-training approaches in the context of homotopy methods in optimization. Our code is available at https://github.com/stanford-futuredata/sinkhorn-label-allocation.


Exponential Moving Average Normalization for Self-supervised and Semi-supervised Learning

arXiv.org Artificial Intelligence

We present a plug-in replacement for batch normalization (BN) called exponential moving average normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-supervised learning techniques. Unlike the standard BN, where the statistics are computed within each batch, EMAN, used in the teacher, updates its statistics by exponential moving average from the BN statistics of the student. This design reduces the intrinsic cross-sample dependency of BN and enhance the generalization of the teacher. EMAN improves strong baselines for self-supervised learning by 4-6/1-2 points and semi-supervised learning by about 7/2 points, when 1%/10% supervised labels are available on ImageNet. These improvements are consistent across methods, network architectures, training duration, and datasets, demonstrating the general effectiveness of this technique.


Building One-Shot Semi-supervised (BOSS) Learning up to Fully Supervised Performance

arXiv.org Machine Learning

Reaching the performance of fully supervised learning with unlabeled data and only labeling one sample per class might be ideal for deep learning applications. We demonstrate for the first time the potential for building one-shot semi-supervised (BOSS) learning on Cifar-10 and SVHN up to attain test accuracies that are comparable to fully supervised learning. Our method combines class prototype refining, class balancing, and self-training. A good prototype choice is essential and we propose a practical technique for obtaining iconic examples. In addition, we demonstrate that class balancing methods substantially improve accuracy results in semi-supervised learning to levels that allow self-training to reach the level of fully supervised learning performance. Rigorous empirical evaluations provide evidence that labeling large datasets is not necessary for training deep neural networks. We made our code available at \url{https://github.com/lnsmith54/BOSS} to facilitate replication and for use with future real-world applications.


FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence

arXiv.org Machine Learning

Semi-supervised learning (SSL) provides an effective means of leveraging unlabeled data to improve a model's performance. In this paper, we demonstrate the power of a simple combination of two common SSL methods: consistency regularization and pseudo-labeling. Our algorithm, FixMatch, first generates pseudo-labels using the model's predictions on weakly-augmented unlabeled images. For a given image, the pseudo-label is only retained if the model produces a high-confidence prediction. The model is then trained to predict the pseudo-label when fed a strongly-augmented version of the same image. Despite its simplicity, we show that FixMatch achieves state-of-the-art performance across a variety of standard semi-supervised learning benchmarks, including 94.93% accuracy on CIFAR-10 with 250 labels and 88.61% accuracy with 40 -- just 4 labels per class. Since FixMatch bears many similarities to existing SSL methods that achieve worse performance, we carry out an extensive ablation study to tease apart the experimental factors that are most important to FixMatch's success. We make our code available at https://github.com/google-research/fixmatch.