Goto

Collaborating Authors

expert system


Registration Open for FREE Webinar: 'Detecting Fraud with Hybrid AI' (October 28, 2020)

#artificialintelligence

In collaboration with BigML partner, INFORM Gmbh, we're pleased to bring the BigML community a new educational webinar: Machine Learning Fights Financial Crime. This FREE virtual event will take place on October 28, 2020, at 8:00 AM PDT / 9:00 AM PDT and it's the ideal learning opportunity for Financial institutions, banking sector professionals, credit professionals, risk advisers, crime fighters, fraud professionals, and anyone interested in finding out about the latest financial crime-fighting and risk analysis strategies and trends. Financial institutions must innovate to stop the onslaught of fraudulent transactions. The utilization of Machine Learning as a tool for fraud detection is trending. Combining Machine Learning with existing intelligent and dynamic rule sets produces a sustainable strategy to address this challenge.


About predicting the future - how AI will transform our lives

#artificialintelligence

While some forecasts will probably get at least something right, others will likely be useful only as demonstrations of how hard it is to predict, and many don't make much sense. What we would like to achieve is for you to be able to look at these and other forecasts, and be able to critically evaluate them. The political scientist Philip E. Tetlock, author of Superforecasting: The Art and Science of Prediction, classifies people into two categories: those who have one big idea ("hedgehogs"), and those who have many small ideas ("foxes"). Tetlock has carried out an experiment between 1984 and 2003 to study factors that could help us identify which predictions are likely to be accurate and which are not. One of the significant findings was that foxes tend to be clearly better at prediction than hedgehogs, especially when it comes to long-term forecasting.


GPT-3: new AI can write like a human but don't mistake that for thinking – neuroscientist

#artificialintelligence

Since it was unveiled earlier this year, the new AI-based language generating software GPT-3 has attracted much attention for its ability to produce passages of writing that are convincingly human-like. Some have even suggested that the program, created by Elon Musk's OpenAI, may be considered or appears to exhibit, something like artificial general intelligence (AGI), the ability to understand or perform any task a human can. This breathless coverage reveals a natural yet aberrant collusion in people's minds between the appearance of language and the capacity to think. Language and thought, though obviously not the same, are strongly and intimately related. And some people tend to assume that language is the ultimate sign of thought.


Assessing Game Balance with AlphaZero: Exploring Alternative Rule Sets in Chess

#artificialintelligence

It is non-trivial to design engaging and balanced sets of game rules. Modern chess has evolved over centuries, but without a similar recourse to history, the consequences of rule changes to game dynamics are difficult to predict. AlphaZero provides an alternative in silico means of game balance assessment. It is a system that can learn near-optimal strategies for any rule set from scratch, without any human supervision, by continually learning from its own experience. In this study we use AlphaZero to creatively explore and design new chess variants.


The use of Artificial Intelligence (AI) in education

#artificialintelligence

There are two different types of AI in wide use today. Recent developments have focused on data-driven machine learning, but in the last decades, most AI applications in education (AIEd) have been based on representational / knowledge-based AI. Data-driven AI uses a programming paradigm that is new to most computing professionals. It requires competences which are different from traditional programming and computational thinking. It opens up new ways to use computing and digital devices. But the development of state-of-the-art AI is now starting to exceed the computational capacity of the largest AI developers. The recent rapid developments in data-driven AI may not be sustainable. The impact of AI in education will depend on how learning and competence needs change, as AI will be widely used in the society and economy.


Neural Language Models as Domain-Specific Knowledge Bases

#artificialintelligence

The fundamental challenge of natural language processing (NLP) is resolution of the ambiguity that is present in the meaning of and intent carried by natural language. To resolve ambiguity within a text, algorithms use knowledge from the context within which the text appears. For example, the presence of the sentence "I visited the zoo." before the sentence "I saw a bat" can be used to conclude that bat represents an animal and not a wooden club. While in many situations neighboring text is sufficient for reducing ambiguity, typically it is not sufficient when dealing with text from specialized domains. Processing domain-specific text requires an understanding of a large number of domain-specific concepts and processes that NLP algorithms cannot glean from neighboring text alone.


12 most interesting artificial intelligence facts you should know

#artificialintelligence

Every day we think, reason, communicate with each other and this is normal. After all, we are sentient beings. But now in this world, not only us have the ability to think, but also yet another human creation – artificial intelligence (AI). So, what is AI? Artificial intelligence has enabled computers to learn with the help of a teacher as well as from their own experience. Neural networks can quickly adapt to the enormous volume of new parameters and perform tasks that they couldn't handle before.


The Latest In ML Ops - 5 Evolutions of Production ML

#artificialintelligence

As more and more industries bring ML use cases to production, the need for consistent practices for managing ML in Production and optimizing ML Lifecycle iteration has grown rapidly. Last year, a few of us partnered with USENIX to drive the first-ever Industry/Academic conference dedicated to the challenges of and innovations in managing ML in Production. OpML 2019 was a great success - bringing together experts, practitioners, engineers, and researchers to discuss the latest and greatest in ML Ops. You can find a summary of OpML 2019 here. This year, due to COVID19, OpML 2020 became a virtual conference with video presentations and open discussions on Slack.


Google Launches An OpenCL-based Mobile GPU Inference Engine

#artificialintelligence

Recently, in an official announcement, Google launched an OpenCL-based mobile GPU inference engine for Android. The tech giant claims that the inference engine offers up to 2x speedup over the OpenGL backend on neural networks which include enough workload for the GPU. This GPU inference engine is currently made available in the latest version of TensorFlow Lite (TFLite) library. Open Graphics Library or OpenGL is an API designed for rendering vector graphics through which a client application can control this system. It is a popular software interface that allows a programmer to communicate with graphics hardware.


What is AI - specifically what is machine learning?

#artificialintelligence

This entry is part 2 of 3 in the series What is AI once and for all? Artificial intelligence is science fiction. Artificial intelligence is already part of our everyday lives. All those statements are true, it just depends on what flavor of AI you are referring to. Most of us are familiar with the term "Artificial Intelligence." After all, it's been a popular focus in movies such as The Terminator, The Matrix, and Ex Machina but you may have recently been hearing about other terms like "#Machine Learning" and "#Deep Learning," sometimes used interchangeably with artificial intelligence.