Collaborating Authors

dialogue system

Conversational Intelligence Challenge: Accelerating Research with Crowd Science and Open Source

AI Magazine

Development of conversational systems is one of the most challenging tasks in natural language processing, and it is especially hard in the case of open-domain dialogue. The main factors that hinder progress in this area are lack of training data and difficulty of automatic evaluation. Thus, to reliably evaluate the quality of such models, one needs to resort to time-consuming and expensive human evaluation. We tackle these problems by organizing the Conversational Intelligence Challenge (ConvAI) -- open competition of dialogue systems. Our goals are threefold: to work out a good design for human evaluation of open-domain dialogue, to grow open-source code base for conversational systems, and to harvest and publish new datasets.

Policy-Driven Neural Response Generation for Knowledge-Grounded Dialogue Systems Artificial Intelligence

Open-domain dialogue systems aim to generate relevant, informative and engaging responses. Seq2seq neural response generation approaches do not have explicit mechanisms to control the content or style of the generated response, and frequently result in uninformative utterances. In this paper, we propose using a dialogue policy to plan the content and style of target responses in the form of an action plan, which includes knowledge sentences related to the dialogue context, targeted dialogue acts, topic information, etc. The attributes within the action plan are obtained by automatically annotating the publicly released Topical-Chat dataset. We condition neural response generators on the action plan which is then realized as target utterances at the turn and sentence levels. We also investigate different dialogue policy models to predict an action plan given the dialogue context. Through automated and human evaluation, we measure the appropriateness of the generated responses and check if the generation models indeed learn to realize the given action plans. We demonstrate that a basic dialogue policy that operates at the sentence level generates better responses in comparison to turn level generation as well as baseline models with no action plan. Additionally the basic dialogue policy has the added effect of controllability.

Modelling Hierarchical Structure between Dialogue Policy and Natural Language Generator with Option Framework for Task-oriented Dialogue System Artificial Intelligence

Designing task-oriented dialogue systems is a challenging research topic, since it needs not only to generate utterances fulfilling user requests but also to guarantee the comprehensibility. Many previous works trained end-to-end (E2E) models with supervised learning (SL), however, the bias in annotated system utterances remains as a bottleneck. Reinforcement learning (RL) deals with the problem through using non-differentiable evaluation metrics (e.g., the success rate) as rewards. Nonetheless, existing works with RL showed that the comprehensibility of generated system utterances could be corrupted when improving the performance on fulfilling user requests. In our work, we (1) propose modelling the hierarchical structure between dialogue policy and natural language generator (NLG) with the option framework, called HDNO; (2) train HDNO with hierarchical reinforcement learning (HRL), as well as suggest alternating updates between dialogue policy and NLG during HRL inspired by fictitious play, to preserve the comprehensibility of generated system utterances while improving fulfilling user requests; and (3) propose using a discriminator modelled with language models as an additional reward to further improve the comprehensibility. We test HDNO on MultiWoz 2.0 and MultiWoz 2.1, the datasets on multi-domain dialogues, in comparison with word-level E2E model trained with RL, LaRL and HDSA, showing a significant improvement on the total performance evaluated with automatic metrics.

Decoding Strategies that You Need to Know for Response Generation


Deep learning has been deployed in many tasks in NLP, such as translation, image captioning, and dialogue systems. In machine translation, it is used to read source language (input) and generate the desired language (output). Similarly in a dialogue system, it is used to generate a response given a context. This is also known as Natural Language Generation (NLG). Encoder reads the input text and returns a vector representing that input.

Emora STDM: A Versatile Framework for Innovative Dialogue System Development Artificial Intelligence

This demo paper presents Emora STDM (State Transition Dialogue Manager), a dialogue system development framework that provides novel workflows for rapid prototyping of chat-based dialogue managers as well as collaborative development of complex interactions. Our framework caters to a wide range of expertise levels by supporting interoperability between two popular approaches, state machine and information state, to dialogue management. Our Natural Language Expression package allows seamless integration of pattern matching, custom NLP modules, and database querying, that makes the workflows much more efficient. As a user study, we adopt this framework to an interdisciplinary undergraduate course where students with both technical and non-technical backgrounds are able to develop creative dialogue managers in a short period of time.

Chat as Expected: Learning to Manipulate Black-box Neural Dialogue Models Artificial Intelligence

Recently, neural network based dialogue systems have become ubiquitous in our increasingly digitalized society. However, due to their inherent opaqueness, some recently raised concerns about using neural models are starting to be taken seriously. In fact, intentional or unintentional behaviors could lead to a dialogue system to generate inappropriate responses. Thus, in this paper, we investigate whether we can learn to craft input sentences that result in a black-box neural dialogue model being manipulated into having its outputs contain target words or match target sentences. We propose a reinforcement learning based model that can generate such desired inputs automatically. Extensive experiments on a popular well-trained state-of-the-art neural dialogue model show that our method can successfully seek out desired inputs that lead to the target outputs in a considerable portion of cases. Consequently, our work reveals the potential of neural dialogue models to be manipulated, which inspires and opens the door towards developing strategies to defend them.

GoChat: Goal-oriented Chatbots with Hierarchical Reinforcement Learning Artificial Intelligence

A chatbot that converses like a human should be goal-oriented (i.e., be purposeful in conversation), which is beyond language generation. However, existing dialogue systems often heavily rely on cumbersome hand-crafted rules or costly labelled datasets to reach the goals. In this paper, we propose Goal-oriented Chatbots (GoChat), a framework for end-to-end training chatbots to maximize the longterm return from offline multi-turn dialogue datasets. Our framework utilizes hierarchical reinforcement learning (HRL), where the high-level policy guides the conversation towards the final goal by determining some sub-goals, and the low-level policy fulfills the sub-goals by generating the corresponding utterance for response. In our experiments on a real-world dialogue dataset for anti-fraud in financial, our approach outperforms previous methods on both the quality of response generation as well as the success rate of accomplishing the goal.

Teacher-Student Framework Enhanced Multi-domain Dialogue Generation Artificial Intelligence

Dialogue systems dealing with multi-domain tasks are highly required. How to record the state remains a key problem in a task-oriented dialogue system. Normally we use human-defined features as dialogue states and apply a state tracker to extract these features. However, the performance of such a system is limited by the error propagation of a state tracker. In this paper, we propose a dialogue generation model that needs no external state trackers and still benefits from human-labeled semantic data. By using a teacher-student framework, several teacher models are firstly trained in their individual domains, learn dialogue policies from labeled states. And then the learned knowledge and experience are merged and transferred to a universal student model, which takes raw utterance as its input. Experiments show that the dialogue system trained under our framework outperforms the one uses a belief tracker.

MTSS: Learn from Multiple Domain Teachers and Become a Multi-domain Dialogue Expert Artificial Intelligence

How to build a high-quality multi-domain dialogue system is a challenging work due to its complicated and entangled dialogue state space among each domain, which seriously limits the quality of dialogue policy, and further affects the generated response. In this paper, we propose a novel method to acquire a satisfying policy and subtly circumvent the knotty dialogue state representation problem in the multi-domain setting. Inspired by real school teaching scenarios, our method is composed of multiple domain-specific teachers and a universal student. Each individual teacher only focuses on one specific domain and learns its corresponding domain knowledge and dialogue policy based on a precisely extracted single domain dialogue state representation. Then, these domain-specific teachers impart their domain knowledge and policies to a universal student model and collectively make this student model a multi-domain dialogue expert. Experiment results show that our method reaches competitive results with SOTAs in both multi-domain and single domain setting.

Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical Analysis of System-wise Evaluation Artificial Intelligence

There is a growing interest in developing goal-oriented dialog systems which serve users in accomplishing complex tasks through multi-turn conversations. Although many methods are devised to evaluate and improve the performance of individual dialog components, there is a lack of comprehensive empirical study on how different components contribute to the overall performance of a dialog system. In this paper, we perform a system-wise evaluation and present an empirical analysis on different types of dialog systems which are composed of different modules in different settings. Our results show that (1) a pipeline dialog system trained using fine-grained supervision signals at different component levels often obtains better performance than the systems that use joint or end-to-end models trained on coarse-grained labels, (2) component-wise, single-turn evaluation results are not always consistent with the overall performance of a dialog system, and (3) despite the discrepancy between simulators and human users, simulated evaluation is still a valid alternative to the costly human evaluation especially in the early stage of development.