Achieving Forgetting Prevention and Knowledge Transfer in Continual Learning
Continual learning (CL) learns a sequence of tasks incrementally with the goal of achieving two main objectives: overcoming catastrophic forgetting (CF) and encouraging knowledge transfer (KT) across tasks. However, most existing techniques focus only on overcoming CF and have no mechanism to encourage KT, and thus do not do well in KT. Although several papers have tried to deal with both CF and KT, our experiments show that they suffer from serious CF when the tasks do not have much shared knowledge. Another observation is that most current CL methods do not use pre-trained models, but it has been shown that such models can significantly improve the end task performance. For example, in natural language processing, fine-tuning a BERT-like pre-trained language model is one of the most effective approaches. However, for CL, this approach suffers from serious CF. An interesting question is how to make the best use of pre-trained models for CL. This paper proposes a novel model called CTR to solve these problems. Our experimental results demonstrate the effectiveness of CTR.
Predicting Event Memorability from Contextual Visual Semantics
Episodic event memory is a key component of human cognition. Predicting event memorability, i.e., to what extent an event is recalled, is a tough challenge in memory research and has profound implications for artificial intelligence. In this study, we investigate factors that affect event memorability according to a cued recall process. Specifically, we explore whether event memorability is contingent on the event context, as well as the intrinsic visual attributes of image cues. We design a novel experiment protocol and conduct a large-scale experiment with 47 elder subjects over 3 months. Subjects' memory of life events is tested in a cued recall process. Using advanced visual analytics methods, we build a first-ofits-kind event memorability dataset (called R3) with rich information about event context and visual semantic features. Furthermore, we propose a contextual event memory network (CEMNet) that tackles multi-modal input to predict item-wise event memorability, which outperforms competitive benchmarks. The findings inform deeper understanding of episodic event memory, and open up a new avenue for prediction of human episodic memory.
Live Graph Lab: Towards Open, Dynamic and Real Transaction Graphs with NFT
Numerous studies have been conducted to investigate the properties of large-scale temporal graphs. Despite the ubiquity of these graphs in real-world scenarios, it's usually impractical for us to obtain the whole real-time graphs due to privacy concerns and technical limitations. In this paper, we introduce the concept of Live Graph Lab for temporal graphs, which enables open, dynamic and real transaction graphs from blockchains. Among them, Non-fungible tokens (NFTs) have become one of the most prominent parts of blockchain over the past several years. With more than $40 billion market capitalization, this decentralized ecosystem produces massive, anonymous and real transaction activities, which naturally forms a complicated transaction network. However, there is limited understanding about the characteristics of this emerging NFT ecosystem from a temporal graph analysis perspective.
A Robust Functional EM Algorithm for Incomplete Panel Count Data
Panel count data describes aggregated counts of recurrent events observed at discrete time points. To understand dynamics of health behaviors and predict future negative events, the field of quantitative behavioral research has evolved to increasingly rely upon panel count data collected via multiple self reports, for example, about frequencies of smoking using in-the-moment surveys on mobile devices. However, missing reports are common and present a major barrier to downstream statistical learning. As a first step, under a missing completely at random assumption (MCAR), we propose a simple yet widely applicable functional EM algorithm to estimate the counting process mean function, which is of central interest to behavioral scientists. The proposed approach wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption. Theoretical analysis of the proposed algorithm provides finite-sample guarantees by expanding parametric EM theory [3, 34] to the general non-parametric setting. We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data. We also discuss useful extensions to address deviations from the MCAR assumption and covariate effects.
A Robust Functional EM Algorithm for Incomplete Panel Count Data
Panel count data describes aggregated counts of recurrent events observed at discrete time points. To understand dynamics of health behaviors and predict future negative events, the field of quantitative behavioral research has evolved to increasingly rely upon panel count data collected via multiple self reports, for example, about frequencies of smoking using in-the-moment surveys on mobile devices. However, missing reports are common and present a major barrier to downstream statistical learning. As a first step, under a missing completely at random assumption (MCAR), we propose a simple yet widely applicable functional EM algorithm to estimate the counting process mean function, which is of central interest to behavioral scientists. The proposed approach wraps several popular panel count inference methods, seamlessly deals with incomplete counts and is robust to misspecification of the Poisson process assumption. Theoretical analysis of the proposed algorithm provides finite-sample guarantees by expanding parametric EM theory [3, 34] to the general non-parametric setting. We illustrate the utility of the proposed algorithm through numerical experiments and an analysis of smoking cessation data. We also discuss useful extensions to address deviations from the MCAR assumption and covariate effects.