Predicting Event Memorability from Contextual Visual Semantics
–Neural Information Processing Systems
Episodic event memory is a key component of human cognition. Predicting event memorability, i.e., to what extent an event is recalled, is a tough challenge in memory research and has profound implications for artificial intelligence. In this study, we investigate factors that affect event memorability according to a cued recall process. Specifically, we explore whether event memorability is contingent on the event context, as well as the intrinsic visual attributes of image cues. We design a novel experiment protocol and conduct a large-scale experiment with 47 elder subjects over 3 months. Subjects' memory of life events is tested in a cued recall process. Using advanced visual analytics methods, we build a first-ofits-kind event memorability dataset (called R3) with rich information about event context and visual semantic features. Furthermore, we propose a contextual event memory network (CEMNet) that tackles multi-modal input to predict item-wise event memorability, which outperforms competitive benchmarks. The findings inform deeper understanding of episodic event memory, and open up a new avenue for prediction of human episodic memory.
Neural Information Processing Systems
Mar-21-2025, 11:25:08 GMT
- Country:
- North America > United States (0.28)
- Genre:
- Research Report > New Finding (1.00)
- Industry:
- Health & Medicine > Therapeutic Area
- Neurology (1.00)
- Psychiatry/Psychology (0.68)
- Health & Medicine > Therapeutic Area
- Technology: