High-probability complexity guarantees for nonconvex minimax problems
Stochastic smooth nonconvex minimax problems are prevalent in machine learning, e.g., GAN training, fair classification, and distributionally robust learning. Stochastic gradient descent ascent (GDA)-type methods are popular in practice due to their simplicity and single-loop nature. However, there is a significant gap between the theory and practice regarding high-probability complexity guarantees for these methods on stochastic nonconvex minimax problems. Existing high-probability bounds for GDA-type single-loop methods only apply to convex/concave minimax problems and to particular non-monotone variational inequality problems under some restrictive assumptions. In this work, we address this gap by providing the first high-probability complexity guarantees for nonconvex/PL minimax problems corresponding to a smooth function that satisfies the PL-condition in the dual variable.
Multi-modal Situated Reasoning in 3D Scenes
Situation awareness is essential for understanding and reasoning about 3D scenes in embodied AI agents. However, existing datasets and benchmarks for situated understanding are limited in data modality, diversity, scale, and task scope. To address these limitations, we propose Multi-modal Situated Question Answering (MSQA), a large-scale multi-modal situated reasoning dataset, scalably collected leveraging 3D scene graphs and vision-language models (VLMs) across a diverse range of real-world 3D scenes. MSQA includes 251K situated question-answering pairs across 9 distinct question categories, covering complex scenarios within 3D scenes. We introduce a novel interleaved multi-modal input setting in our benchmark to provide text, image, and point cloud for situation and question description, resolving ambiguity in previous single-modality convention (e.g., text). Additionally, we devise the Multi-modal Situated Next-step Navigation (MSNN) benchmark to evaluate models' situated reasoning for navigation. Comprehensive evaluations on MSQA and MSNN highlight the limitations of existing vision-language models and underscore the importance of handling multi-modal interleaved inputs and situation modeling. Experiments on data scaling and cross-domain transfer further demonstrate the efficacy of leveraging MSQA as a pre-training dataset for developing more powerful situated reasoning models.
A Unifying Normative Framework of Decision Confidence
Self-assessment of one's choices, i.e., confidence, is the topic of many decision neuroscience studies. Computational models of confidence, however, are limited to specific scenarios such as between choices with the same value. Here we present a normative framework for modeling decision confidence that is generalizable to various tasks and experimental setups.
CoMix: A Comprehensive Benchmark for Multi-Task Comic Understanding
However, in PopManga, such a page receives only partial annotations, primarily highlighting large-scale depictions and main characters. This selective approach underscores our focus on significant elements over exhaustive detailing, which aligns with our annotation strategy to emphasize clarity and relevance in highly complex scenes.
CoMix: A Comprehensive Benchmark for Multi-Task Comic Understanding Marco Bertini 2
The comic domain is rapidly advancing with the development of single-page analysis and synthesis models. However, evaluation metrics and datasets lag behind, often limited to small-scale or single-style test sets. We introduce a novel benchmark, CoMix, designed to evaluate the multi-task capabilities of models in comic analysis. Unlike existing benchmarks that focus on isolated tasks such as object detection or text recognition, CoMix addresses a broader range of tasks including object detection, speaker identification, character re-identification, reading order, and multi-modal reasoning tasks like character naming and dialogue generation. Our benchmark comprises three existing datasets with expanded annotations to support multi-task evaluation.
Supplementary Material - WikiDO: A New Benchmark Evaluating Cross-Modal Retrieval for Vision-Language Models
Q1 For what purpose was the dataset created? Was there a specific task in mind? Q2 Who created the dataset (e.g., which team, research group) and on behalf of which Q3 Who funded the creation of the dataset? Q1 What do the instances that comprise the dataset represent (e.g., documents, photos, Are there multiple types of instances (e.g., movies, users, and ratings; Q2 How many instances are there in total (of each type, if appropriate)? Is the sample representative of the larger set (e.g., geographic coverage)?
Recurrent Complex-Weighted Autoencoders for Unsupervised Object Discovery Jรผrgen Schmidhuber 1,3
Current state-of-the-art synchrony-based models encode object bindings with complex-valued activations and compute with real-valued weights in feedforward architectures. We argue for the computational advantages of a recurrent architecture with complex-valued weights. We propose a fully convolutional autoencoder, SynCx, that performs iterative constraint satisfaction: at each iteration, a hidden layer bottleneck encodes statistically regular configurations of features in particular phase relationships; over iterations, local constraints propagate and the model converges to a globally consistent configuration of phase assignments. Binding is achieved simply by the matrix-vector product operation between complex-valued weights and activations, without the need for additional mechanisms that have been incorporated into current synchrony-based models. SynCx outperforms or is strongly competitive with current models for unsupervised object discovery. SynCx also avoids certain systematic grouping errors of current models, such as the inability to separate similarly colored objects without additional supervision.
A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences Richard Michael University of Copenhagen University of Copenhagen Simon Bartels
Optimizing discrete black box functions is key in several domains, e.g. protein engineering and drug design. Due to the lack of gradient information and the need for sample efficiency, Bayesian optimization is an ideal candidate for these tasks. Several methods for high-dimensional continuous and categorical Bayesian optimization have been proposed recently. However, our survey of the field reveals highly heterogeneous experimental set-ups across methods and technical barriers for the replicability and application of published algorithms to real-world tasks. To address these issues, we develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black box functions representing real-world application domains in chemistry and biology. These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries (poli and poli-baselines), allowing practitioners to readily incorporate new optimization objectives or discrete optimizers.