AMP: Automatically Finding Model Parallel Strategies with Heterogeneity Awareness Dacheng Li c

Neural Information Processing Systems

Scaling up model sizes can lead to fundamentally new capabilities in many machine learning (ML) tasks. However, training big models requires strong distributed system expertise to carefully design model-parallel execution strategies that suit the model architectures and cluster setups. In this paper, we develop AMP, a framework that automatically derives such strategies. AMP identifies a valid space of model parallelism strategies and efficiently searches the space for high-performed strategies, by leveraging a cost model designed to capture the heterogeneity of the model and cluster specifications. Unlike existing methods, AMP is specifically tailored to support complex models composed of uneven layers and cluster setups with more heterogeneous accelerators and bandwidth. We evaluate AMP on popular models and cluster setups from public clouds and show that AMP returns parallel strategies that match the expert-tuned strategies on typical cluster setups. On heterogeneous clusters or models with heterogeneous architectures, AMP finds strategies with 1.54 and 1.77 higher throughput than state-of-the-art model-parallel systems, respectively.



Cross-Modal Domain Adaptation for Cost-Efficient Visual Reinforcement Learning Xiong-Hui Chen

Neural Information Processing Systems

In visual-input sim-to-real scenarios, to overcome the reality gap between images rendered in simulators and those from the real world, domain adaptation, i.e., learning an aligned representation space between simulators and the real world, then training and deploying policies in the aligned representation, is a promising direction. Previous methods focus on same-modal domain adaptation. However, those methods require building and running simulators that render high-quality images, which can be difficult and costly. In this paper, we consider a more costefficient setting of visual-input sim-to-real where only low-dimensional states are simulated. We first point out that the objective of learning mapping functions in previous methods that align the representation spaces is ill-posed, prone to yield an incorrect mapping. When the mapping crosses modalities, previous methods are easier to fail.


How to Use Diffusion Priors under Sparse Views?

Neural Information Processing Systems

Novel view synthesis under sparse views has been a long-term important challenge in 3D reconstruction. Existing works mainly rely on introducing external semantic or depth priors to supervise the optimization of 3D representations. However, the diffusion model, as an external prior that can directly provide visual supervision, has always underperformed in sparse-view 3D reconstruction using Score Distillation Sampling (SDS) due to the low information entropy of sparse views compared to text, leading to optimization challenges caused by mode deviation. To this end, we present a thorough analysis of SDS from the mode-seeking perspective and propose Inline Prior Guided Score Matching (IPSM), which leverages visual inline priors provided by pose relationships between viewpoints to rectify the rendered image distribution and decomposes the original optimization objective of SDS, thereby offering effective diffusion visual guidance without any fine-tuning or pre-training. Furthermore, we propose the IPSM-Gaussian pipeline, which adopts 3D Gaussian Splatting as the backbone and supplements depth and geometry consistency regularization based on IPSM to further improve inline priors and rectified distribution. Experimental results on different public datasets show that our method achieves state-of-the-art reconstruction quality. The code is released at https://github.com/iCVTEAM/IPSM.


Exact learning dynamics of deep linear networks with prior knowledge

Neural Information Processing Systems

Learning in deep neural networks is known to depend critically on the knowledge embedded in the initial network weights. However, few theoretical results have precisely linked prior knowledge to learning dynamics. Here we derive exact solutions to the dynamics of learning with rich prior knowledge in deep linear networks by generalising Fukumizu's matrix Riccati solution [1]. We obtain explicit expressions for the evolving network function, hidden representational similarity, and neural tangent kernel over training for a broad class of initialisations and tasks. The expressions reveal a class of task-independent initialisations that radically alter learning dynamics from slow non-linear dynamics to fast exponential trajectories while converging to a global optimum with identical representational similarity, dissociating learning trajectories from the structure of initial internal representations. We characterise how network weights dynamically align with task structure, rigorously justifying why previous solutions successfully described learning from small initial weights without incorporating their fine-scale structure. Finally, we discuss the implications of these findings for continual learning, reversal learning and learning of structured knowledge. Taken together, our results provide a mathematical toolkit for understanding the impact of prior knowledge on deep learning.


Hierarchical and Density-based Causal Clustering

Neural Information Processing Systems

Understanding treatment effect heterogeneity is vital for scientific and policy research. However, identifying and evaluating heterogeneous treatment effects pose significant challenges due to the typically unknown subgroup structure. Recently, a novel approach, causal k-means clustering, has emerged to assess heterogeneity of treatment effect by applying the k-means algorithm to unknown counterfactual regression functions. In this paper, we expand upon this framework by integrating hierarchical and density-based clustering algorithms. We propose plug-in estimators which are simple and readily implementable using off-the-shelf algorithms.


Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers Appendix

Neural Information Processing Systems

Improved performance on SSv2 is one way to infer that our model makes better use of temporal information, however, here we consider another way. We artificially adjust the speed of the video clips by changing the temporal stride of the input. A larger stride simulates faster motions, with adjacent frames being more different. If our trajectory attention is able to make better use of the temporal information in the video than the other attention mechanisms, we expect the margin of improvement to increase as the temporal stride increases. As shown in Figure 1, this is indeed what we observe, with the lines diverging as temporal stride increases, especially for the motion cue-reliant SSv2 dataset.


Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers

Neural Information Processing Systems

In video transformers, the time dimension is often treated in the same way as the two spatial dimensions. However, in a scene where objects or the camera may move, a physical point imaged at one location in frame t may be entirely unrelated to what is found at that location in frame t + k. These temporal correspondences should be modeled to facilitate learning about dynamic scenes. To this end, we propose a new drop-in block for video transformers--trajectory attention--that aggregates information along implicitly determined motion paths. We additionally propose a new method to address the quadratic dependence of computation and memory on the input size, which is particularly important for high resolution or long videos. While these ideas are useful in a range of settings, we apply them to the specific task of video action recognition with a transformer model and obtain state-of-the-art results on the Kinetics, Something-Something V2, and Epic-Kitchens datasets.


MV2Cyl: Reconstructing 3D Extrusion Cylinders from Multi-View Images

Neural Information Processing Systems

Extracting extrusion cylinders from raw 3D geometry has been extensively researched in computer vision, while the processing of 3D data through neural networks has remained a bottleneck. Since 3D scans are generally accompanied by multi-view images, leveraging 2D convolutional neural networks allows these images to be exploited as a rich source for extracting extrusion cylinder information. However, we observe that extracting only the surface information of the extrudes and utilizing it results in suboptimal outcomes due to the challenges in the occlusion and surface segmentation. By synergizing with the extracted base curve information, we achieve the optimal reconstruction result with the best accuracy in 2D sketch and extrude parameter estimation. Our experiments, comparing our method with previous work that takes a raw 3D point cloud as input, demonstrate the effectiveness of our approach by taking advantage of multi-view images. Our project page can be found at https://mv2cyl.github.io.