Boosting the Potential of Large Language Models with an Intelligent Information Assistant Yujia Zhou
The emergence of Large Language Models (LLMs) has significantly advanced natural language processing, but these models often generate factually incorrect information, known as "hallucination". Initial retrieval-augmented generation (RAG) methods like the "Retrieve-Read" framework was inadequate for complex reasoning tasks. Subsequent prompt-based RAG strategies and Supervised Fine-Tuning (SFT) methods improved performance but required frequent retraining and risked altering foundational LLM capabilities.
SnapKV: LLM Knows What You Are Looking for before Generation Bowen Yang
Large Language Models (LLMs) have made remarkable progress in processing extensive contexts, with the Key-Value (KV) cache playing a vital role in enhancing their performance. However, the growth of the KV cache in response to increasing input length poses challenges to memory and time efficiency. To address this problem, this paper introduces SnapKV, an innovative and fine-tuning-free approach that efficiently minimizes KV cache size while still delivering comparable accuracy in real-world applications. We discover that each attention head in the model consistently focuses on specific prompt attention features during generation. Meanwhile, this robust pattern can be obtained from an'observation' window located at the end of the prompts.
Reliable Post hoc Explanations: Modeling Uncertainty in Explainability
As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by state-of-the-art techniques are inconsistent, unstable, and provide very little insight into their correctness and reliability. In addition, these methods are also computationally inefficient, and require significant hyper-parameter tuning. In this paper, we address the aforementioned challenges by developing a novel Bayesian framework for generating local explanations along with their associated uncertainty. We instantiate this framework to obtain Bayesian versions of LIME and KernelSHAP which output credible intervals for the feature importances, capturing the associated uncertainty. The resulting explanations not only enable us to make concrete inferences about their quality (e.g., there is a 95% chance that the feature importance lies within the given range), but are also highly consistent and stable. We carry out a detailed theoretical analysis that leverages the aforementioned uncertainty to estimate how many perturbations to sample, and how to sample for faster convergence. This work makes the first attempt at addressing several critical issues with popular explanation methods in one shot, thereby generating consistent, stable, and reliable explanations with guarantees in a computationally efficient manner. Experimental evaluation with multiple real world datasets and user studies demonstrate that the efficacy of the proposed framework.
Towards Automated Circuit Discovery for Mechanistic Interpretability
Through considerable effort and intuition, several recent works have reverseengineered nontrivial behaviors of transformer models. This paper systematizes the mechanistic interpretability process they followed. First, researchers choose a metric and dataset that elicit the desired model behavior. Then, they apply activation patching to find which abstract neural network units are involved in the behavior. By varying the dataset, metric, and units under investigation, researchers can understand the functionality of each component.
Distribution Learning with Valid Outputs Beyond the Worst-Case
Generative models at times produce "invalid" outputs, such as images with generation artifacts and unnatural sounds. Validity-constrained distribution learning attempts to address this problem by requiring that the learned distribution have a provably small fraction of its mass in invalid parts of space - something which standard loss minimization does not always ensure. To this end, a learner in this model can guide the learning via "validity queries", which allow it to ascertain the validity of individual examples. Prior work on this problem takes a worst-case stance, showing that proper learning requires an exponential number of validity queries, and demonstrating an improper algorithm which - while generating guarantees in a wide-range of settings - makes an atypical polynomial number of validity queries. In this work, we take a first step towards characterizing regimes where guaranteeing validity is easier than in the worst-case. We show that when the data distribution lies in the model class and the log-loss is minimized, the number of samples required to ensure validity has a weak dependence on the validity requirement. Additionally, we show that when the validity region belongs to a VC-class, a limited number of validity queries are often sufficient.
Decision Mamba: A Multi-Grained State Space Model with Self-Evolution Regularization for Offline RL Gongwei Chen
While the conditional sequence modeling with the transformer architecture has demonstrated its effectiveness in dealing with offline reinforcement learning (RL) tasks, it is struggle to handle out-of-distribution states and actions. Existing work attempts to address this issue by data augmentation with the learned policy or adding extra constraints with the value-based RL algorithm. However, these studies still fail to overcome the following challenges: (1) insufficiently utilizing the historical temporal information among inter-steps, (2) overlooking the local intrastep relationships among return-to-gos (RTGs), states and actions, (3) overfitting suboptimal trajectories with noisy labels. To address these challenges, we propose Decision Mamba (DM), a novel multi-grained state space model (SSM) with a selfevolving policy learning strategy. DM explicitly models the historical hidden state to extract the temporal information by using the mamba architecture. To capture the relationship among RTG-state-action triplets, a fine-grained SSM module is designed and integrated into the original coarse-grained SSM in mamba, resulting in a novel mamba architecture tailored for offline RL. Finally, to mitigate the overfitting issue on noisy trajectories, a self-evolving policy is proposed by using progressive regularization. The policy evolves by using its own past knowledge to refine the suboptimal actions, thus enhancing its robustness on noisy demonstrations. Extensive experiments on various tasks show that DM outperforms other baselines substantially.