Subject-driven Text-to-Image Generation via Preference-based Reinforcement Learning
Text-to-image generative models have recently attracted considerable interest, enabling the synthesis of high-quality images from textual prompts. However, these models often lack the capability to generate specific subjects from given reference images or to synthesize novel renditions under varying conditions. Methods like DreamBooth and Subject-driven Text-to-Image (SuTI) have made significant progress in this area. Yet, both approaches primarily focus on enhancing similarity to reference images and require expensive setups, often overlooking the need for efficient training and avoiding overfitting to the reference images. In this work, we present the ฮป-Harmonic reward function, which provides a reliable reward signal and enables early stopping for faster training and effective regularization.
Dynamic Filter Networks
Xu Jia, Bert De Brabandere, Tinne Tuytelaars, Luc V. Gool
In a traditional convolutional layer, the learned filters stay fixed after training. In contrast, we introduce a new framework, the Dynamic Filter Network, where filters are generated dynamically conditioned on an input. We show that this architecture is a powerful one, with increased flexibility thanks to its adaptive nature, yet without an excessive increase in the number of model parameters. A wide variety of filtering operations can be learned this way, including local spatial transformations, but also others like selective (de)blurring or adaptive feature extraction. Moreover, multiple such layers can be combined, e.g. in a recurrent architecture. We demonstrate the effectiveness of the dynamic filter network on the tasks of video and stereo prediction, and reach state-of-the-art performance on the moving MNIST dataset with a much smaller model. By visualizing the learned filters, we illustrate that the network has picked up flow information by only looking at unlabelled training data. This suggests that the network can be used to pretrain networks for various supervised tasks in an unsupervised way, like optical flow and depth estimation.
Towards Understanding Extrapolation: a Causal Lens Lingjing Kong 1 Guangyi Chen 1,2 Haoxuan Li2
However, practical scenarios often involve only a handful of target samples, potentially lying outside the training support, which requires the capability of extrapolation. In this work, we aim to provide a theoretical understanding of when extrapolation is possible and offer principled methods to achieve it without requiring an on-support target distribution. To this end, we formulate the extrapolation problem with a latent-variable model that embodies the minimal change principle in causal mechanisms. Under this formulation, we cast the extrapolation problem into a latent-variable identification problem. We provide realistic conditions on shift properties and the estimation objectives that lead to identification even when only one off-support target sample is available, tackling the most challenging scenarios. Our theory reveals the intricate interplay between the underlying manifold's smoothness and the shift properties. We showcase how our theoretical results inform the design of practical adaptation algorithms.
df334022279996b07e0870a629c18857-Paper-Conference.pdf
Deep learning sometimes appears to work in unexpected ways. In pursuit of a deeper understanding of its surprising behaviors, we investigate the utility of a simple yet accurate model of a trained neural network consisting of a sequence of first-order approximations telescoping out into a single empirically operational tool for practical analysis. Across three case studies, we illustrate how it can be applied to derive new empirical insights on a diverse range of prominent phenomena in the literature - including double descent, grokking, linear mode connectivity, and the challenges of applying deep learning on tabular data - highlighting that this model allows us to construct and extract metrics that help predict and understand the a priori unexpected performance of neural networks. We also demonstrate that this model presents a pedagogical formalism allowing us to isolate components of the training process even in complex contemporary settings, providing a lens to reason about the effects of design choices such as architecture & optimization strategy, and reveals surprising parallels between neural network learning and gradient boosting.
Near-Optimal Smoothing of Structured Conditional Probability Matrices
Moein Falahatgar, Mesrob I. Ohannessian, Alon Orlitsky
Utilizing the structure of a probabilistic model can significantly increase its learning speed. Motivated by several recent applications, in particular bigram models in language processing, we consider learning low-rank conditional probability matrices under expected KL-risk. This choice makes smoothing, that is the careful handling of low-probability elements, paramount. We derive an iterative algorithm that extends classical non-negative matrix factorization to naturally incorporate additive smoothing and prove that it converges to the stationary points of a penalized empirical risk. We then derive sample-complexity bounds for the global minimzer of the penalized risk and show that it is within a small factor of the optimal sample complexity.
Richelieu: Self-Evolving LLM-Based Agents for AI Diplomacy Zhenyu Guan Yizhou Wang
Diplomacy is one of the most sophisticated activities in human society, involving complex interactions among multiple parties that require skills in social reasoning, negotiation, and long-term strategic planning. Previous AI agents have demonstrated their ability to handle multi-step games and large action spaces in multi-agent tasks. However, diplomacy involves a staggering magnitude of decision spaces, especially considering the negotiation stage required. While recent agents based on large language models (LLMs) have shown potential in various applications, they still struggle with extended planning periods in complex multi-agent settings. Leveraging recent technologies for LLM-based agents, we aim to explore AI's potential to create a human-like agent capable of executing comprehensive multi-agent missions by integrating three fundamental capabilities: 1) strategic planning with memory and reflection; 2) goaloriented negotiation with social reasoning; and 3) augmenting memory through self-play games for self-evolution without human in the loop.
Persistent Test-time Adaptation in Recurring Testing Scenarios
Current test-time adaptation (TTA) approaches aim to adapt a machine learning model to environments that change continuously. Yet, it is unclear whether TTA methods can maintain their adaptability over prolonged periods. To answer this question, we introduce a diagnostic setting - recurring TTA where environments not only change but also recur over time, creating an extensive data stream. This setting allows us to examine the error accumulation of TTA models, in the most basic scenario, when they are regularly exposed to previous testing environments. Furthermore, we simulate a TTA process on a simple yet representative ฯต-perturbed Gaussian Mixture Model Classifier, deriving theoretical insights into the dataset-and algorithm-dependent factors contributing to gradual performance degradation. Our investigation leads us to propose persistent TTA (PeTTA), which senses when the model is diverging towards collapse and adjusts the adaptation strategy, striking a balance between the dual objectives of adaptation and model collapse prevention. The supreme stability of PeTTA over existing approaches, in the face of lifelong TTA scenarios, has been demonstrated over comprehensive experiments on various benchmarks. Our project page is available at https://hthieu166.github.io/petta.
Deqian Kong
In tasks aiming for long-term returns, planning becomes essential. We study generative modeling for planning with datasets repurposed from offline reinforcement learning. Specifically, we identify temporal consistency in the absence of step-wise rewards as one key technical challenge. We introduce the Latent Plan Transformer (LPT), a novel model that leverages a latent variable to connect a Transformerbased trajectory generator and the final return. LPT can be learned with maximum likelihood estimation on trajectory-return pairs.
Coordinate-wise Power Method
Qi Lei, Kai Zhong, Inderjit S. Dhillon
In this paper, we propose a coordinate-wise version of the power method from an optimization viewpoint. The vanilla power method simultaneously updates all the coordinates of the iterate, which is essential for its convergence analysis. However, different coordinates converge to the optimal value at different speeds. Our proposed algorithm, which we call coordinate-wise power method, is able to select and update the most important k coordinates in O(kn) time at each iteration, where n is the dimension of the matrix and k apple n is the size of the active set. Inspired by the "greedy" nature of our method, we further propose a greedy coordinate descent algorithm applied on a non-convex objective function specialized for symmetric matrices. We provide convergence analyses for both methods. Experimental results on both synthetic and real data show that our methods achieve up to 23 times speedup over the basic power method. Meanwhile, due to their coordinate-wise nature, our methods are very suitable for the important case when data cannot fit into memory. Finally, we introduce how the coordinatewise mechanism could be applied to other iterative methods that are used in machine learning.