Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image
In this work, we introduce Unique3D, a novel image-to-3D framework for efficiently generating high-quality 3D meshes from single-view images, featuring state-of-the-art generation fidelity and strong generalizability. Previous methods based on Score Distillation Sampling (SDS) can produce diversified 3D results by distilling 3D knowledge from large 2D diffusion model, but they usually suffer from long per-case optimization time with inconsistent issues. Recent works address the problem and generate better 3D results either by finetuning a multi-view diffusion model or training a fast feed-forward model. However, they still lack intricate textures and complex geometries due to inconsistency and limited gener-38th Conference on Neural Information Processing Systems (NeurIPS 2024).
af835bd1b5b689c3f9d075ae5a15bf3e-Paper-Conference.pdf
The ever-increasing computational complexity of deep learning models makes their training and deployment difficult on various cloud and edge platforms. Replacing floating-point arithmetic with low-bit integer arithmetic is a promising approach to save energy, memory footprint, and latency of deep learning models. As such, quantization has attracted the attention of researchers in recent years. However, using integer numbers to form a fully functional integer training pipeline including forward pass, back-propagation, and stochastic gradient descent is not studied in detail. Our empirical and mathematical results reveal that integer arithmetic seems to be enough to train deep learning models. Unlike recent proposals, instead of quantization, we directly switch the number representation of computations. Our novel training method forms a fully integer training pipeline that does not change the trajectory of the loss and accuracy compared to floating-point, nor does it need any special hyper-parameter tuning, distribution adjustment, or gradient clipping. Our experimental results show that our proposed method is effective in a wide variety of tasks such as classification (including vision transformers), object detection, and semantic segmentation.
Assembly Fuzzy Representation on Hypergraph for Open-Set 3D Object Retrieval
The lack of object-level labels presents a significant challenge for 3D object retrieval in the open-set environment. However, part-level shapes of objects often share commonalities across categories but remain underexploited in existing retrieval methods. In this paper, we introduce the Hypergraph-Based Assembly Fuzzy Representation (HAFR) framework, which navigates the intricacies of open-set 3D object retrieval through a bottom-up lens of Part Assembly. To tackle the challenge of assembly isomorphism and unification, we propose the Hypergraph Isomorphism Convolution (HIConv) for smoothing and adopt the Isomorphic Assembly Embedding (IAE) module to generate assembly embeddings with geometric-semantic consistency. To address the challenge of open-set category generalization, our method employs high-order correlations and fuzzy representation to mitigate distribution skew through the Structure Fuzzy Reconstruction (SFR) module, by constructing a leveraged hypergraph based on local certainty and global uncertainty correlations. We construct three open-set retrieval datasets for 3D objects with partlevel annotations: OP-SHNP, OP-INTRA, and OP-COSEG. Extensive experiments and ablation studies on these three benchmarks show our method outperforms current state-of-the-art methods.
Principled Weight Initialisation for Input-Convex Neural Networks
Input-Convex Neural Networks (ICNNs) are networks that guarantee convexity in their input-output mapping. These networks have been successfully applied for energy-based modelling, optimal transport problems and learning invariances. The convexity of ICNNs is achieved by using non-decreasing convex activation functions and non-negative weights. Because of these peculiarities, previous initialisation strategies, which implicitly assume centred weights, are not effective for ICNNs. By studying signal propagation through layers with non-negative weights, we are able to derive a principled weight initialisation for ICNNs. Concretely, we generalise signal propagation theory by removing the assumption that weights are sampled from a centred distribution. In a set of experiments, we demonstrate that our principled initialisation effectively accelerates learning in ICNNs and leads to better generalisation. Moreover, we find that, in contrast to common belief, ICNNs can be trained without skip-connections when initialised correctly. Finally, we apply ICNNs to a real-world drug discovery task and show that they allow for more effective molecular latent space exploration.
Adaptive Passive-Aggressive Framework for Online Regression with Side Information
The Passive-Aggressive (PA) method is widely used in online regression problems for handling large-scale streaming data, typically updating model parameters in a passive-aggressive manner based on whether the error exceeds a predefined threshold. However, this approach struggles with determining optimal thresholds and adapting to complex scenarios with side information, where tracking accuracy is not the sole metric in the regression model. To address these challenges, we introduce a novel adaptive framework that allows finer adjustments to the weight vector in PA using side information. This framework adaptively selects the threshold parameter in PA, theoretically ensuring convergence to the optimal setting. Additionally, we present an efficient implementation of our algorithm that significantly reduces computational complexity. Numerical experiments show that our model achieves outstanding performance associated with the side information while maintaining low tracking error, demonstrating marked improvements over traditional PA methods across various scenarios.
Invariant Tokenization of Crystalline Materials for Language Model Enabled Generation
We consider the problem of crystal materials generation using language models (LMs). A key step is to convert 3D crystal structures into 1D sequences to be processed by LMs. Prior studies used the crystallographic information framework (CIF) file stream, which fails to ensure SE(3) and periodic invariance and may not lead to unique sequence representations for a given crystal structure. Here, we propose a novel method, known as Mat2Seq, to tackle this challenge. Mat2Seq converts 3D crystal structures into 1D sequences and ensures that different mathematical descriptions of the same crystal are represented in a single unique sequence, thereby provably achieving SE(3) and periodic invariance. Experimental results show that, with language models, Mat2Seq achieves promising performance in crystal structure generation as compared with prior methods.
Confidence Regulation Neurons in Language Models
Despite their widespread use, the mechanisms by which large language models (LLMs) represent and regulate uncertainty in next-token predictions remain largely unexplored. This study investigates two critical components believed to influence this uncertainty: the recently discovered entropy neurons and a new set of components that we term token frequency neurons. Entropy neurons are characterized by an unusually high weight norm and influence the final layer normalization (LayerNorm) scale to effectively scale down the logits. Our work shows that entropy neurons operate by writing onto an unembedding null space, allowing them to impact the residual stream norm with minimal direct effect on the logits themselves. We observe the presence of entropy neurons across a range of models, up to 7 billion parameters. On the other hand, token frequency neurons, which we discover and describe here for the first time, boost or suppress each token's logit proportionally to its log frequency, thereby shifting the output distribution towards or away from the unigram distribution. Finally, we present a detailed case study where entropy neurons actively manage confidence in the setting of induction, i.e. detecting and continuing repeated subsequences.