DiffusionPDE: Generative PDE-Solving Under Partial Observation Jiahe Huang 1 Guandao Yang Zichen Wang 1

Neural Information Processing Systems

We introduce a general framework for solving partial differential equations (PDEs) using generative diffusion models. In particular, we focus on the scenarios where we do not have the full knowledge of the scene necessary to apply classical solvers. Most existing forward or inverse PDE approaches perform poorly when the observations on the data or the underlying coefficients are incomplete, which is a common assumption for real-world measurements. In this work, we propose DiffusionPDE that can simultaneously fill in the missing information and solve a PDE by modeling the joint distribution of the solution and coefficient spaces. We show that the learned generative priors lead to a versatile framework for accurately solving a wide range of PDEs under partial observation, significantly outperforming the state-of-the-art methods for both forward and inverse directions. See our project page for results: jhhuangchloe.github.io/Diffusion-PDE/.




Ultrafast classical phylogenetic method beats large protein language models on variant effect prediction

Neural Information Processing Systems

Amino acid substitution rate matrices are fundamental to statistical phylogenetics and evolutionary biology. Estimating them typically requires reconstructed trees for massive amounts of aligned proteins, which poses a major computational bottleneck. In this paper, we develop a near-linear time method to estimate these rate matrices from multiple sequence alignments (MSAs) alone, thereby speeding up computation by orders of magnitude. Our method relies on a near-linear time cherry reconstruction algorithm which we call FastCherries and it can be easily applied to MSAs with millions of sequences. On both simulated and real data, we demonstrate the speed and accuracy of our method as applied to the classical model of protein evolution. By leveraging the unprecedented scalability of our method, we develop a new, rich phylogenetic model called SiteRM, which can estimate a general site-specific rate matrix for each column of an MSA. Remarkably, in variant effect prediction for both clinical and deep mutational scanning data in ProteinGym, we show that despite being an independent-sites model, our SiteRM model outperforms large protein language models that learn complex residueresidue interactions between different sites. We attribute our increased performance to conceptual advances in our probabilistic treatment of evolutionary data and our ability to handle extremely large MSAs. We anticipate that our work will have a lasting impact across both statistical phylogenetics and computational variant effect prediction.



OpenSRH: optimizing brain tumor surgery using intraoperative stimulated Raman histology

Neural Information Processing Systems

Accurate intraoperative diagnosis is essential for providing safe and effective care during brain tumor surgery. Our standard-of-care diagnostic methods are time, resource, and labor intensive, which restricts access to optimal surgical treatments. To address these limitations, we propose an alternative workflow that combines stimulated Raman histology (SRH), a rapid optical imaging method, with deep learning-based automated interpretation of SRH images for intraoperative brain tumor diagnosis and real-time surgical decision support.


Monte Carlo Tree Search based Variable Selection for High Dimensional Bayesian Optimization Lei Song

Neural Information Processing Systems

Bayesian optimization (BO) is a class of popular methods for expensive black-box optimization, and has been widely applied to many scenarios. However, BO suffers from the curse of dimensionality, and scaling it to high-dimensional problems is still a challenge. In this paper, we propose a variable selection method MCTS-VS based on Monte Carlo tree search (MCTS), to iteratively select and optimize a subset of variables. That is, MCTS-VS constructs a low-dimensional subspace via MCTS and optimizes in the subspace with any BO algorithm. We give a theoretical analysis of the general variable selection method to reveal how it can work. Experiments on high-dimensional synthetic functions and real-world problems (i.e., NAS-bench problems and MuJoCo locomotion tasks) show that MCTS-VS equipped with a proper BO optimizer can achieve state-of-the-art performance.



Improved learning rates in multi-unit uniform price auctions Marius Potfer 1,2 Dorian Baudry 3 Hugo Richard 1

Neural Information Processing Systems

Motivated by the strategic participation of electricity producers in electricity dayahead market, we study the problem of online learning in repeated multi-unit uniform price auctions focusing on the adversarial opposing bid setting. The main contribution of this paper is the introduction of a new modeling of the bid space.