Visual Riddles: a Commonsense and World Knowledge Challenge for Large Visionand Language Models

Neural Information Processing Systems

Imagine observing someone scratching their arm; to understand why, additional context would be necessary. However, spotting a mosquito nearby would immediately offer a likely explanation for the person's discomfort, thereby alleviating the need for further information. This example illustrates how subtle visual cues can challenge our cognitive skills and demonstrates the complexity of interpreting visual scenarios. To study these skills, we present Visual Riddles, a benchmark aimed to test vision and language models on visual riddles requiring commonsense and world knowledge. The benchmark comprises 400 visual riddles, each featuring a unique image created by a variety of text-to-image models, question, groundtruth answer, textual hint, and attribution. Human evaluation reveals that existing models lag significantly behind human performance, which is at 82% accuracy, with Gemini-Pro-1.5 leading with 40% accuracy. Our benchmark comes with automatic evaluation tasks to make assessment scalable. These findings underscore the potential of Visual Riddles as a valuable resource for enhancing vision and language models' capabilities in interpreting complex visual scenarios.


Fully Distributed, Flexible Compositional Visual Representations via Soft Tensor Products

Neural Information Processing Systems

Since the inception of the classicalist vs. connectionist debate, it has been argued that the ability to systematically combine symbol-like entities into compositional representations is crucial for human intelligence. In connectionist systems, the field of disentanglement has gained prominence for its ability to produce explicitly compositional representations; however, it relies on a fundamentally symbolic, concatenative representation of compositional structure that clashes with the continuous, distributed foundations of deep learning. To resolve this tension, we extend Smolensky's Tensor Product Representation (TPR) and introduce Soft TPR, a representational form that encodes compositional structure in an inherently distributed, flexible manner, along with Soft TPR Autoencoder, a theoretically-principled architecture designed specifically to learn Soft TPRs. Comprehensive evaluations in the visual representation learning domain demonstrate that the Soft TPR framework consistently outperforms conventional disentanglement alternatives - achieving state-of-the-art disentanglement, boosting representation learner convergence, and delivering superior sample efficiency and low-sample regime performance in downstream tasks. These findings highlight the promise of a distributed and flexible approach to representing compositional structure by potentially enhancing alignment with the core principles of deep learning over the conventional symbolic approach.


Boosting Text-to-Video Generative Model with MLLMs Feedback

Neural Information Processing Systems

Recent advancements in text-to-video generative models, such as Sora [3], have showcased impressive capabilities. These models have attracted significant interest for their potential applications. However, they often rely on extensive datasets of variable quality, which can result in generated videos that lack aesthetic appeal and do not accurately reflect the input text prompts. A promising approach to mitigate these issues is to leverage Reinforcement Learning from Human Feedback (RLHF), which aims to align the outputs of text-to-video models with human preferences. However, the considerable costs associated with manual annotation have led to a scarcity of comprehensive preference datasets. In response to this challenge, our study begins by investigating the efficacy of Multimodal Large Language Models (MLLMs) generated annotations in capturing video preferences, discovering a high degree of concordance with human judgments.


Recurrent neural networks: vanishing and exploding gradients are not the end of the story

Neural Information Processing Systems

Recurrent neural networks (RNNs) notoriously struggle to learn long-term memories, primarily due to vanishing and exploding gradients. The recent success of deep state-space models (SSMs), a subclass of RNNs, to overcome such difficulties challenges our theoretical understanding. In this paper, we delve into the optimization challenges of RNNs and discover that, as the memory of a network increases, changes in its parameters result in increasingly large output variations, making gradient-based learning highly sensitive, even without exploding gradients. Our analysis further reveals the importance of the element-wise recurrence design pattern combined with careful parametrizations in mitigating this effect. This feature is present in deep SSMs, as well as in other architectures, such as LSTMs.


Label Noise Robustness for Domain-Agnostic Fair Corrections via Nearest Neighbors Label Spreading

Neural Information Processing Systems

Last-layer retraining methods have emerged as an efficient framework for correcting existing base models. Within this framework, several methods have been proposed to deal with correcting models for subgroup fairness with and without group membership information. Importantly, prior work has demonstrated that many methods are susceptible to noisy labels. To this end, we propose a drop-in correction for label noise in last-layer retraining, and demonstrate that it achieves state-ofthe-art worst-group accuracy for a broad range of symmetric label noise and across a wide variety of datasets exhibiting spurious correlations. Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead compared to existing methods.


Visual S: Sketching as a Visual Chain of Thought for Multimodal Language Models

Neural Information Processing Systems

Humans draw to facilitate reasoning: we draw auxiliary lines when solving geometry problems; we mark and circle when reasoning on maps; we use sketches to amplify our ideas and relieve our limited-capacity working memory. However, such actions are missing in current multimodal language models (LMs). Current chain-of-thought and tool-use paradigms only use text as intermediate reasoning steps.


Query-Efficient Correlation Clustering with Noisy Oracle

Neural Information Processing Systems

We study a general clustering setting in which we have n elements to be clustered, and we aim to perform as few queries as possible to an oracle that returns a noisy sample of the weighted similarity between two elements. Our setting encompasses many application domains in which the similarity function is costly to compute and inherently noisy. We introduce two novel formulations of online learning problems rooted in the paradigm of Pure Exploration in Combinatorial Multi-Armed Bandits (PE-CMAB): fixed confidence and fixed budget settings. For both settings, we design algorithms that combine a sampling strategy with a classic approximation algorithm for correlation clustering and study their theoretical guarantees. Our results are the first examples of polynomial-time algorithms that work for the case of PE-CMAB in which the underlying offline optimization problem is NP-hard.


Search for Efficient Large Language Models

Neural Information Processing Systems

Large Language Models (LLMs) have long held sway in the realms of artificial intelligence research. Numerous efficient techniques, including weight pruning, quantization, and distillation, have been embraced to compress LLMs, targeting memory reduction and inference acceleration, which underscore the redundancy in LLMs. However, most model compression techniques concentrate on weight optimization, overlooking the exploration of optimal architectures. Besides, traditional architecture search methods, limited by the elevated complexity with extensive parameters, struggle to demonstrate their effectiveness on LLMs. In this paper, we propose a training-free architecture search framework to identify optimal subnets that preserve the fundamental strengths of the original LLMs while achieving inference acceleration. Furthermore, after generating subnets that inherit specific weights from the original LLMs, we introduce a reformation algorithm that utilizes the omitted weights to rectify the inherited weights with a small amount of calibration data. Compared with SOTA training-free structured pruning works that can generate smaller networks, our method demonstrates superior performance across standard benchmarks. Furthermore, our generated subnets can directly reduce the usage of GPU memory and achieve inference acceleration.


Efficiency of the First-Price Auction in the Autobidding World

Neural Information Processing Systems

We study the price of anarchy of first-price auctions in the autobidding world, where bidders can be either utility maximizers (i.e., traditional bidders) or value maximizers (i.e., autobidders). We show that with autobidders only, the price of anarchy of first-price auctions is 1/2, and with both kinds of bidders, the price of anarchy degrades to about 0.457 (the precise number is given by an optimization).


Natural-Parameter Networks: A Class of Probabilistic Neural Networks

Neural Information Processing Systems

Neural networks (NN) have achieved state-of-the-art performance in various applications. Unfortunately in applications where training data is insufficient, they are often prone to overfitting. One effective way to alleviate this problem is to exploit the Bayesian approach by using Bayesian neural networks (BNN). Another shortcoming of NN is the lack of flexibility to customize different distributions for the weights and neurons according to the data, as is often done in probabilistic graphical models. To address these problems, we propose a class of probabilistic neural networks, dubbed natural-parameter networks (NPN), as a novel and lightweight Bayesian treatment of NN.