Learning Treewidth-Bounded Bayesian Networks with Thousands of Variables
We present a method for learning treewidth-bounded Bayesian networks from data sets containing thousands of variables. Bounding the treewidth of a Bayesian network greatly reduces the complexity of inferences. Yet, being a global property of the graph, it considerably increases the difficulty of the learning process. Our novel algorithm accomplishes this task, scaling both to large domains and to large treewidths. Our novel approach consistently outperforms the state of the art on experiments with up to thousands of variables.
Scaled Least Squares Estimator for GLMs in Large-Scale Problems
We study the problem of efficiently estimating the coefficients of generalized linear models (GLMs) in the large-scale setting where the number of observations n is much larger than the number of predictors p, i.e. n\gg p \gg 1 . We show that in GLMs with random (not necessarily Gaussian) design, the GLM coefficients are approximately proportional to the corresponding ordinary least squares (OLS) coefficients. Using this relation, we design an algorithm that achieves the same accuracy as the maximum likelihood estimator (MLE) through iterations that attain up to a cubic convergence rate, and that are cheaper than any batch optimization algorithm by at least a factor of \mathcal{O}(p) . We provide theoretical guarantees for our algorithm, and analyze the convergence behavior in terms of data dimensions.
Learning Infinite RBMs with Frank-Wolfe
In this work, we propose an infinite restricted Boltzmann machine (RBM), whose maximum likelihood estimation (MLE) corresponds to a constrained convex optimization. We consider the Frank-Wolfe algorithm to solve the program, which provides a sparse solution that can be interpreted as inserting a hidden unit at each iteration, so that the optimization process takes the form of a sequence of finite models of increasing complexity. As a side benefit, this can be used to easily and efficiently identify an appropriate number of hidden units during the optimization. The resulting model can also be used as an initialization for typical state-of-the-art RBM training algorithms such as contrastive divergence, leading to models with consistently higher test likelihood than random initialization.
Improved Variational Inference with Inverse Autoregressive Flow
The framework of normalizing flows provides a general strategy for flexible variational inference of posteriors over latent variables. We propose a new type of normalizing flow, inverse autoregressive flow (IAF), that, in contrast to earlier published flows, scales well to high-dimensional latent spaces. The proposed flow consists of a chain of invertible transformations, where each transformation is based on an autoregressive neural network. In experiments, we show that IAF significantly improves upon diagonal Gaussian approximate posteriors. In addition, we demonstrate that a novel type of variational autoencoder, coupled with IAF, is competitive with neural autoregressive models in terms of attained log-likelihood on natural images, while allowing significantly faster synthesis.
Satisfying Real-world Goals with Dataset Constraints
The goal of minimizing misclassification error on a training set is often just one of several real-world goals that might be defined on different datasets. For example, one may require a classifier to also make positive predictions at some specified rate for some subpopulation (fairness), or to achieve a specified empirical recall. Other real-world goals include reducing churn with respect to a previously deployed model, or stabilizing online training. In this paper we propose handling multiple goals on multiple datasets by training with dataset constraints, using the ramp penalty to accurately quantify costs, and present an efficient algorithm to approximately optimize the resulting non-convex constrained optimization problem. Experiments on both benchmark and real-world industry datasets demonstrate the effectiveness of our approach.
Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling
We study the problem of recovering an incomplete m\times n matrix of rank r with columns arriving online over time. This is known as the problem of life-long matrix completion, and is widely applied to recommendation system, computer vision, system identification, etc. The challenge is to design provable algorithms tolerant to a large amount of noises, with small sample complexity. In this work, we give algorithms achieving strong guarantee under two realistic noise models. In bounded deterministic noise, an adversary can add any bounded yet unstructured noise to each column.
Leveraging Sparsity for Efficient Submodular Data Summarization
The facility location problem is widely used for summarizing large datasets and has additional applications in sensor placement, image retrieval, and clustering. One difficulty of this problem is that submodular optimization algorithms require the calculation of pairwise benefits for all items in the dataset. This is infeasible for large problems, so recent work proposed to only calculate nearest neighbor benefits. One limitation is that several strong assumptions were invoked to obtain provable approximation guarantees. In this paper we establish that these extra assumptions are not necessary--solving the sparsified problem will be almost optimal under the standard assumptions of the problem.
DECOrrelated feature space partitioning for distributed sparse regression
Fitting statistical models is computationally challenging when the sample size or the dimension of the dataset is huge. An attractive approach for down-scaling the problem size is to first partition the dataset into subsets and then fit using distributed algorithms. The dataset can be partitioned either horizontally (in the sample space) or vertically (in the feature space). While the majority of the literature focuses on sample space partitioning, feature space partitioning is more effective when p n. Existing methods for partitioning features, however, are either vulnerable to high correlations or inefficient in reducing the model dimension. In this paper, we solve these problems through a new embarrassingly parallel framework named DECO for distributed variable selection and parameter estimation.
Unified Methods for Exploiting Piecewise Linear Structure in Convex Optimization
We develop methods for rapidly identifying important components of a convex optimization problem for the purpose of achieving fast convergence times. By considering a novel problem formulation--the minimization of a sum of piecewise functions--we describe a principled and general mechanism for exploiting piecewise linear structure in convex optimization. This result leads to a theoretically justified working set algorithm and a novel screening test, which generalize and improve upon many prior results on exploiting structure in convex optimization. In empirical comparisons, we study the scalability of our methods. We find that screening scales surprisingly poorly with the size of the problem, while our working set algorithm convincingly outperforms alternative approaches.
Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs
We define and study the problem of predicting the solution to a linear program (LP) given only partial information about its objective and constraints. This generalizes the problem of learning to predict the purchasing behavior of a rational agent who has an unknown objective function, that has been studied under the name "Learning from Revealed Preferences". We give mistake bound learning algorithms in two settings: in the first, the objective of the LP is known to the learner but there is an arbitrary, fixed set of constraints which are unknown. Each example is defined by an additional known constraint and the goal of the learner is to predict the optimal solution of the LP given the union of the known and unknown constraints. This models the problem of predicting the behavior of a rational agent whose goals are known, but whose resources are unknown.