LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS

Neural Information Processing Systems

Recent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15 compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.


General Tensor Spectral Co-clustering for Higher-Order Data

Neural Information Processing Systems

Spectral clustering and co-clustering are well-known techniques in data analysis, and recent work has extended spectral clustering to square, symmetric tensors and hypermatrices derived from a network. We develop a new tensor spectral co-clustering method that simultaneously clusters the rows, columns, and slices of a nonnegative three-mode tensor and generalizes to tensors with any number of modes. The algorithm is based on a new random walk model which we call the super-spacey random surfer. We show that our method out-performs state-of-the-art co-clustering methods on several synthetic datasets with ground truth clusters and then use the algorithm to analyze several real-world datasets.


Get the MOVA P10 Pro Ultra robot vacuum and mop for its lowest price ever

Mashable

SAVE 38%: As of June 2, you can get the MOVA P10 Pro Ultra robot vacuum and mop for 499, down from 799. It's also the lowest price we've seen on this model so far. One of the best purchases you can make for yourself is a robot vacuum or, even better, a robot vacuum-mop combo. These little gadgets make cleaning your house so much easier, especially if you have pets or children. Right now, Amazon's got quite a few robot vacuum deals going on.


TextCtrl: Diffusion-based Scene Text Editing with Prior Guidance Control Zhenhang Li1,3 Dongbao Yang 1,3

Neural Information Processing Systems

Centred on content modification and style preservation, Scene Text Editing (STE) remains a challenging task despite considerable progress in text-to-image synthesis and text-driven image manipulation recently. GAN-based STE methods generally encounter a common issue of model generalization, while Diffusion-based STE methods suffer from undesired style deviations. To address these problems, we propose TextCtrl, a diffusion-based method that edits text with prior guidance control. Our method consists of two key components: (i) By constructing finegrained text style disentanglement and robust text glyph structure representation, TextCtrl explicitly incorporates Style-Structure guidance into model design and network training, significantly improving text style consistency and rendering accuracy.


Learning to learn by gradient descent by gradient descent

Neural Information Processing Systems

The move from hand-designed features to learned features in machine learning has been wildly successful. In spite of this, optimization algorithms are still designed by hand. In this paper we show how the design of an optimization algorithm can be cast as a learning problem, allowing the algorithm to learn to exploit structure in the problems of interest in an automatic way. Our learned algorithms, implemented by LSTMs, outperform generic, hand-designed competitors on the tasks for which they are trained, and also generalize well to new tasks with similar structure. We demonstrate this on a number of tasks, including simple convex problems, training neural networks, and styling images with neural art.


Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

Neural Information Processing Systems

Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g.\ using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator.


On Multiplicative Integration with Recurrent Neural Networks

Neural Information Processing Systems

We introduce a general simple structural design called "Multiplicative Integration" (MI) to improve recurrent neural networks (RNNs). MI changes the way of how the information flow gets integrated in the computational building block of an RNN, while introducing almost no extra parameters. The new structure can be easily embedded into many popular RNN models, including LSTMs and GRUs. We empirically analyze its learning behaviour and conduct evaluations on several tasks using different RNN models. Our experimental results demonstrate that Multiplicative Integration can provide a substantial performance boost over many of the existing RNN models.


FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation

Neural Information Processing Systems

Data assimilation is a vital component in modern global medium-range weather forecasting systems to obtain the best estimation of the atmospheric state by combining the short-term forecast and observations. Recently, AI-based data assimilation approaches have attracted increasing attention for their significant advantages over traditional techniques in terms of computational consumption. However, existing AI-based data assimilation methods can only handle observations with a specific resolution, lacking the compatibility and generalization ability to assimilate observations with other resolutions. Considering that complex real-world observations often have different resolutions, we propose the Fourier Neural Processes (FNP) for arbitrary-resolution data assimilation in this paper. Leveraging the efficiency of the designed modules and flexible structure of neural processes, FNP achieves state-of-the-art results in assimilating observations with varying resolutions, and also exhibits increasing advantages over the counterparts as the resolution and the amount of observations increase. Moreover, our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning, demonstrating its excellent generalization ability across data resolutions as well as across tasks.


Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation

Neural Information Processing Systems

Learning goal-directed behavior in environments with sparse feedback is a major challenge for reinforcement learning algorithms. One of the key difficulties is insufficient exploration, resulting in an agent being unable to learn robust policies. Intrinsically motivated agents can explore new behavior for their own sake rather than to directly solve external goals. Such intrinsic behaviors could eventually help the agent solve tasks posed by the environment. We present hierarchical-DQN (h-DQN), a framework to integrate hierarchical action-value functions, operating at different temporal scales, with goal-driven intrinsically motivated deep reinforcement learning.


1 2 Background 2 3 Higher-Order Denoising Diffusion Solver 3 3.1 Learning Higher-Order Derivatives 4 4 Related Work 6 5 Experiments 7 5.1 Image Generation

Neural Information Processing Systems

The DDIM ODE has previously been shown [58, 69] to be a re-parameterization of the Probability Flow ODE [57]. In this section, we show an alternative presentation to the ones given in Song et al. [58] and Salimans and Ho [69]. We start from the Probability Flow ODE for variance-preserving continuous-time DDMs [57], i.e., dx