Near-Optimal Smoothing of Structured Conditional Probability Matrices

Neural Information Processing Systems

Utilizing the structure of a probabilistic model can significantly increase its learning speed. Motivated by several recent applications, in particular bigram models in language processing, we consider learning low-rank conditional probability matrices under expected KL-risk. This choice makes smoothing, that is the careful handling of low-probability elements, paramount. We derive an iterative algorithm that extends classical non-negative matrix factorization to naturally incorporate additive smoothing and prove that it converges to the stationary points of a penalized empirical risk. We then derive sample-complexity bounds for the global minimizer of the penalized risk and show that it is within a small factor of the optimal sample complexity.


Preference Completion from Partial Rankings

Neural Information Processing Systems

We propose a novel and efficient algorithm for the collaborative preference completion problem, which involves jointly estimating individualized rankings for a set of entities over a shared set of items, based on a limited number of observed affinity values. Our approach exploits the observation that while preferences are often recorded as numerical scores, the predictive quantity of interest is the underlying rankings. Thus, attempts to closely match the recorded scores may lead to overfitting and impair generalization performance. Instead, we propose an estimator that directly fits the underlying preference order, combined with nuclear norm constraints to encourage low--rank parameters. Besides (approximate) correctness of the ranking order, the proposed estimator makes no generative assumption on the numerical scores of the observations. One consequence is that the proposed estimator can fit any consistent partial ranking over a subset of the items represented as a directed acyclic graph (DAG), generalizing standard techniques that can only fit preference scores.


Architectural Complexity Measures of Recurrent Neural Networks

Neural Information Processing Systems

In this paper, we systematically analyze the connecting architectures of recurrent neural networks (RNNs). Our main contribution is twofold: first, we present a rigorous graph-theoretic framework describing the connecting architectures of RNNs in general. Second, we propose three architecture complexity measures of RNNs: (a) the recurrent depth, which captures the RNN's over-time nonlinear complexity, (b) the feedforward depth, which captures the local input-output nonlinearity (similar to the "depth" in feedforward neural networks (FNNs)), and (c) the recurrent skip coefficient which captures how rapidly the information propagates over time. We rigorously prove each measure's existence and computability. Our experimental results show that RNNs might benefit from larger recurrent depth and feedforward depth.


Object based Scene Representations using Fisher Scores of Local Subspace Projections

Neural Information Processing Systems

Several works have shown that deep CNN classifiers can be easily transferred across datasets, e.g. the transfer of a CNN trained to recognize objects on ImageNET to an object detector on Pascal VOC. Less clear, however, is the ability of CNNs to transfer knowledge across tasks. A common example of such transfer is the problem of scene classification that should leverage localized object detections to recognize holistic visual concepts. While this problem is currently addressed with Fisher vector representations, these are now shown ineffective for the high-dimensional and highly non-linear features extracted by modern CNNs. It is argued that this is mostly due to the reliance on a model, the Gaussian mixture of diagonal covariances, which has a very limited ability to capture the second order statistics of CNN features.


FPNN: Field Probing Neural Networks for 3D Data

Neural Information Processing Systems

Building discriminative representations for 3D data has been an important task in computer graphics and computer vision research. Convolutional Neural Networks (CNNs) have shown to operate on 2D images with great success for a variety of tasks. Lifting convolution operators to 3D (3DCNNs) seems like a plausible and promising next step. Unfortunately, the computational complexity of 3D CNNs grows cubically with respect to voxel resolution. Moreover, since most 3D geometry representations are boundary based, occupied regions do not increase proportionately with the size of the discretization, resulting in wasted computation.


Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction

Neural Information Processing Systems

Time series prediction problems are becoming increasingly high-dimensional in modern applications, such as climatology and demand forecasting. For example, in the latter problem, the number of items for which demand needs to be forecast might be as large as 50,000. In addition, the data is generally noisy and full of missing values. Thus, modern applications require methods that are highly scalable, and can deal with noisy data in terms of corruptions or missing values. However, classical time series methods usually fall short of handling these issues.


Linear Feature Encoding for Reinforcement Learning

Neural Information Processing Systems

Feature construction is of vital importance in reinforcement learning, as the quality of a value function or policy is largely determined by the corresponding features. Typical deep RL approaches use a linear output layer, which means that deep RL can be interpreted as a feature construction/encoding network followed by linear value function approximation. This paper develops and evaluates a theory of linear feature encoding. We extend theoretical results on feature quality for linear value function approximation from the uncontrolled case to the controlled case. We then develop a supervised linear feature encoding method that is motivated by insights from linear value function approximation theory, as well as empirical successes from deep RL.


Causal meets Submodular: Subset Selection with Directed Information

Neural Information Processing Systems

We study causal subset selection with Directed Information as the measure of prediction causality. Two typical tasks, causal sensor placement and covariate selection, are correspondingly formulated into cardinality constrained directed information maximizations. To attack the NP-hard problems, we show that the first problem is submodular while not necessarily monotonic. And the second one is nearly'' submodular. To substantiate the idea of approximate submodularity, we introduce a novel quantity, namely submodularity index (SmI), for general set functions.


Adaptive optimal training of animal behavior

Neural Information Processing Systems

Neuroscience experiments often require training animals to perform tasks designed to elicit various sensory, cognitive, and motor behaviors. Training typically involves a series of gradual adjustments of stimulus conditions and rewards in order to bring about learning. However, training protocols are usually hand-designed, relying on a combination of intuition, guesswork, and trial-and-error, and often require weeks or months to achieve a desired level of task performance. Here we combine ideas from reinforcement learning and adaptive optimal experimental design to formulate methods for adaptive optimal training of animal behavior. Our work addresses two intriguing problems at once: first, it seeks to infer the learning rules underlying an animal's behavioral changes during training; second, it seeks to exploit these rules to select stimuli that will maximize the rate of learning toward a desired objective.


Deep Submodular Functions: Definitions and Learning

Neural Information Processing Systems

We propose and study a new class of submodular functions called deep submodular functions (DSFs). We define DSFs and situate them within the broader context of classes of submodular functions in relationship both to various matroid ranks and sums of concave composed with modular functions (SCMs). Notably, we find that DSFs constitute a strictly broader class than SCMs, thus motivating their use, but that they do not comprise all submodular functions. Interestingly, some DSFs can be seen as special cases of certain deep neural networks (DNNs), hence the name. Finally, we provide a method to learn DSFs in a max-margin framework, and offer preliminary results applying this both to synthetic and real-world data instances.