Causal meets Submodular: Subset Selection with Directed Information

Neural Information Processing Systems 

We study causal subset selection with Directed Information as the measure of prediction causality. Two typical tasks, causal sensor placement and covariate selection, are correspondingly formulated into cardinality constrained directed information maximizations. To attack the NP-hard problems, we show that the first problem is submodular while not necessarily monotonic. And the second one is nearly'' submodular. To substantiate the idea of approximate submodularity, we introduce a novel quantity, namely submodularity index (SmI), for general set functions.