Not enough data to create a plot.
Try a different view from the menu above.
Horizon-Independent Minimax Linear Regression
We consider online linear regression: at each round, an adversary reveals a covariate vector, the learner predicts a real value, the adversary reveals a label, and the learner suffers the squared prediction error. The aim is to minimize the difference between the cumulative loss and that of the linear predictor that is best in hindsight. Previous work demonstrated that the minimax optimal strategy is easy to compute recursively from the end of the game; this requires the entire sequence of covariate vectors in advance. We show that, once provided with a measure of the scale of the problem, we can invert the recursion and play the minimax strategy without knowing the future covariates. Further, we show that this forward recursion remains optimal even against adaptively chosen labels and covariates, provided that the adversary adheres to a set of constraints that prevent misrepresentation of the scale of the problem. This strategy is horizon-independent in that the regret and minimax strategies depend on the size of the constraint set and not on the time-horizon, and hence it incurs no more regret than the optimal strategy that knows in advance the number of rounds of the game. We also provide an interpretation of the minimax algorithm as a follow-the-regularized-leader strategy with a data-dependent regularizer and obtain an explicit expression for the minimax regret.
Enhancing Domain Adaptation through Prompt Gradient Alignment Lam Tran
Prior Unsupervised Domain Adaptation (UDA) methods often aim to train a domain-invariant feature extractor, which may hinder the model from learning sufficiently discriminative features. To tackle this, a line of works based on prompt learning leverages the power of large-scale pre-trained vision-language models to learn both domain-invariant and specific features through a set of domain-agnostic and domain-specific learnable prompts. Those studies typically enforce invariant constraints on representation, output, or prompt space to learn such prompts. Differently, we cast UDA as a multiple-objective optimization problem in which each objective is represented by a domain loss. Under this new framework, we propose aligning per-objective gradients to foster consensus between them. Additionally, to prevent potential overfitting when fine-tuning this deep learning architecture, we penalize the norm of these gradients. To achieve these goals, we devise a practical gradient update procedure that can work under both single-source and multi-source UDA.
Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss
At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they exploit a supervised scheme that heavily depends on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains.
Empirical Risk Minimization Under Fairness Constraints
Michele Donini, Luca Oneto, Shai Ben-David, John S. Shawe-Taylor, Massimiliano Pontil
We address the problem of algorithmic fairness: ensuring that sensitive information does not unfairly influence the outcome of a classifier. We present an approach based on empirical risk minimization, which incorporates a fairness constraint into the learning problem. It encourages the conditional risk of the learned classifier to be approximately constant with respect to the sensitive variable. We derive both risk and fairness bounds that support the statistical consistency of our methodology. We specify our approach to kernel methods and observe that the fairness requirement implies an orthogonality constraint which can be easily added to these methods. We further observe that for linear models the constraint translates into a simple data preprocessing step. Experiments indicate that the method is empirically effective and performs favorably against state-of-the-art approaches.
A versatile informative diffusion model for single-cell ATAC-seq data generation and analysis
The rapid advancement of single-cell ATAC sequencing (scATAC-seq) technologies holds great promise for investigating the heterogeneity of epigenetic landscapes at the cellular level. The amplification process in scATAC-seq experiments often introduces noise due to dropout events, which results in extreme sparsity that hinders accurate analysis. Consequently, there is a significant demand for the generation of high-quality scATAC-seq data in silico. Furthermore, current methodologies are typically task-specific, lacking a versatile framework capable of handling multiple tasks within a single model. In this work, we propose ATAC-Diff, a versatile framework, which is based on a latent diffusion model conditioned on the latent auxiliary variables to adapt for various tasks. ATAC-Diff is the first diffusion model for the scATAC-seq data generation and analysis, composed of auxiliary modules encoding the latent high-level variables to enable the model to learn the semantic information to sample high-quality data. Gaussian Mixture Model (GMM) as the latent prior and auxiliary decoder, the yield variables reserve the refined genomic information beneficial for downstream analyses. Another innovation is the incorporation of mutual information between observed and hidden variables as a regularization term to prevent the model from decoupling from latent variables. Through extensive experiments, we demonstrate that ATAC-Diff achieves high performance in both generation and analysis tasks, outperforming state-of-the-art models.
Gradient-Free Methods for Nonconvex Nonsmooth Stochastic Compositional Optimization
Stochastic compositional optimization (SCO) problems are popular in many realworld applications, including risk management, reinforcement learning, and metalearning. However, most of the previous methods for SCO require the smoothness assumption on both the outer and inner functions, which limits their applications to a wider range of problems. In this paper, we study the SCO problem in that both the outer and inner functions are Lipschitz continuous but possibly nonconvex and nonsmooth. In particular, we propose gradient-free stochastic methods for finding the (δ, ϵ)-Goldstein stationary points of such problems with non-asymptotic convergence rates. Our results also lead to an improved convergence rate for the convex nonsmooth SCO problem. Furthermore, we conduct numerical experiments to demonstrate the effectiveness of the proposed methods.
GraphCroc: Cross-Correlation Autoencoder for Graph Structural Reconstruction
Graph-structured data is integral to many applications, prompting the development of various graph representation methods. Graph autoencoders (GAEs), in particular, reconstruct graph structures from node embeddings. Current GAE models primarily utilize self-correlation to represent graph structures and focus on node-level tasks, often overlooking multi-graph scenarios. Our theoretical analysis indicates that selfcorrelation generally falls short in accurately representing specific graph features such as islands, symmetrical structures, and directional edges, particularly in smaller or multiple graph contexts. To address these limitations, we introduce a cross-correlation mechanism that significantly enhances the GAE representational capabilities. Additionally, we propose the GraphCroc, a new GAE that supports flexible encoder architectures tailored for various downstream tasks and ensures robust structural reconstruction, through a mirrored encoding-decoding process. This model also tackles the challenge of representation bias during optimization by implementing a loss-balancing strategy. Both theoretical analysis and numerical evaluations demonstrate that our methodology significantly outperforms existing self-correlation-based GAEs in graph structure reconstruction.
Opening the Vocabulary of Egocentric Actions Shugao Ma2 Angela Yao
Human actions in egocentric videos often feature hand-object interactions composed of a verb (performed by the hand) applied to an object. Despite their extensive scaling up, egocentric datasets still face two limitations -- sparsity of action compositions and a closed set of interacting objects. This paper proposes a novel open vocabulary action recognition task. Given a set of verbs and objects observed during training, the goal is to generalize the verbs to an open vocabulary of actions with seen and novel objects. To this end, we decouple the verb and object predictions via an object-agnostic verb encoder and a prompt-based object encoder. The prompting leverages CLIP representations to predict an open vocabulary of interacting objects. We create open vocabulary benchmarks on the EPIC-KITCHENS-100 and Assembly101 datasets; whereas closed-action methods fail to generalize, our proposed method is effective. In addition, our object encoder significantly outperforms existing open-vocabulary visual recognition methods in recognizing novel interacting objects.