Not enough data to create a plot.
Try a different view from the menu above.
InversionView: A General-Purpose Method for Reading Information from Neural Activations
The inner workings of neural networks can be better understood if we can fully decipher the information encoded in neural activations. In this paper, we argue that this information is embodied by the subset of inputs that give rise to similar activations. We propose InversionView, which allows us to practically inspect this subset by sampling from a trained decoder model conditioned on activations. This helps uncover the information content of activation vectors, and facilitates understanding of the algorithms implemented by transformer models. We present four case studies where we investigate models ranging from small transformers to GPT-2. In these studies, we show that InversionView can reveal clear information contained in activations, including basic information about tokens appearing in the context, as well as more complex information, such as the count of certain tokens, their relative positions, and abstract knowledge about the subject. We also provide causally verified circuits to confirm the decoded information.
MLFMF: Data Sets for Machine Learning for Mathematical Formalization Supplementary Material Matej Petkoviฤ Faculty of Mathematics and Physics Faculty of Mathematics and Physics University of Ljubljana
This document provides several pieces of meta-information about the MLFMF data set collection, as well as some additional details and results from the experiments. For a detailed description of the preprocessing scripts and the script for running the model, please refer to the README in the repository. However, due to space limitations, all the preprocessed data can be found at https://doi.org/10.5281/zenodo.10041075, We obtained the source code of the libraries from their publicly available GitHub repositories. At the time of collection, we retrieved the latest versions of the libraries, which are specified in Table 1.
MLFMF: Data Sets for Machine Learning for Mathematical Formalization
We introduce MLFMF, a collection of data sets for benchmarking recommendation systems used to support formalization of mathematics with proof assistants. These systems help humans identify which previous entries (theorems, constructions, datatypes, and postulates) are relevant in proving a new theorem or carrying out a new construction. Each data set is derived from a library of formalized mathematics written in proof assistants Agda or Lean. The collection includes the largest Lean 4 library Mathlib, and some of the largest Agda libraries: the standard library, the library of univalent mathematics Agda-unimath, and the TypeTopology library. Each data set represents the corresponding library in two ways: as a heterogeneous network, and as a list of s-expressions representing the syntax trees of all the entries in the library.
FNP: Fourier Neural Processes for Arbitrary-Resolution Data Assimilation
Data assimilation is a vital component in modern global medium-range weather forecasting systems to obtain the best estimation of the atmospheric state by combining the short-term forecast and observations. Recently, AI-based data assimilation approaches have attracted increasing attention for their significant advantages over traditional techniques in terms of computational consumption. However, existing AI-based data assimilation methods can only handle observations with a specific resolution, lacking the compatibility and generalization ability to assimilate observations with other resolutions. Considering that complex real-world observations often have different resolutions, we propose the Fourier Neural Processes (FNP) for arbitrary-resolution data assimilation in this paper. Leveraging the efficiency of the designed modules and flexible structure of neural processes, FNP achieves state-of-the-art results in assimilating observations with varying resolutions, and also exhibits increasing advantages over the counterparts as the resolution and the amount of observations increase. Moreover, our FNP trained on a fixed resolution can directly handle the assimilation of observations with out-of-distribution resolutions and the observational information reconstruction task without additional fine-tuning, demonstrating its excellent generalization ability across data resolutions as well as across tasks.
Learning the Infinitesimal Generator of Stochastic Diffusion Processes
We address data-driven learning of the infinitesimal generator of stochastic diffusion processes, essential for understanding numerical simulations of natural and physical systems. The unbounded nature of the generator poses significant challenges, rendering conventional analysis techniques for Hilbert-Schmidt operators ineffective. To overcome this, we introduce a novel framework based on the energy functional for these stochastic processes.
Smooth Hess: ReLU Network Feature Interactions via Stein's Lemma
This poses a challenge for ReLU networks, which are piecewise-linear and thus have a zero Hessian almost everywhere. We propose SmoothHess, a method of estimating second-order interactions through Stein's Lemma. In particular, we estimate the Hessian of the network convolved with a Gaussian through an efficient sampling algorithm, requiring only network gradient calls. SmoothHess is applied post-hoc, requires no modifications to the ReLU network architecture, and the extent of smoothing can be controlled explicitly. We provide a non-asymptotic bound on the sample complexity of our estimation procedure. We validate the superior ability of SmoothHess to capture interactions on benchmark datasets and a real-world medical spirometry dataset.
Diffusion Twigs with Loop Guidance for Conditional Graph Generation
We introduce a novel score-based diffusion framework named Twigs that incorporates multiple co-evolving flows for enriching conditional generation tasks. Specifically, a central or trunk diffusion process is associated with a primary variable (e.g., graph structure), and additional offshoot or stem processes are dedicated to dependent variables (e.g., graph properties or labels). A new strategy, which we call loop guidance, effectively orchestrates the flow of information between the trunk and the stem processes during sampling. This approach allows us to uncover intricate interactions and dependencies, and unlock new generative capabilities. We provide extensive experiments to demonstrate strong performance gains of the proposed method over contemporary baselines in the context of conditional graph generation, underscoring the potential of Twigs in challenging generative tasks such as inverse molecular design and molecular optimization.