Plotting

Curriculum Learning for Graph Neural Networks: Which Edges Should We Learn First Junxiang Wang

Neural Information Processing Systems

Graph Neural Networks (GNNs) have achieved great success in representing data with dependencies by recursively propagating and aggregating messages along the edges. However, edges in real-world graphs often have varying degrees of difficulty, and some edges may even be noisy to the downstream tasks. Therefore, existing GNNs may lead to suboptimal learned representations because they usually treat every edge in the graph equally. On the other hand, Curriculum Learning (CL), which mimics the human learning principle of learning data samples in a meaningful order, has been shown to be effective in improving the generalization ability and robustness of representation learners by gradually proceeding from easy to more difficult samples during training. Unfortunately, existing CL strategies are designed for independent data samples and cannot trivially generalize to handle data dependencies. To address these issues, we propose a novel CL strategy to gradually incorporate more edges into training according to their difficulty from easy to hard, where the degree of difficulty is measured by how well the edges are expected given the model training status. We demonstrate the strength of our proposed method in improving the generalization ability and robustness of learned representations through extensive experiments on nine synthetic datasets and nine real-world datasets.


Novel Object Synthesis via Adaptive Text-Image Harmony

Neural Information Processing Systems

In this paper, we study an object synthesis task that combines an object text with an object image to create a new object image. However, most diffusion models struggle with this task, i.e., often generating an object that predominantly reflects either the text or the image due to an imbalance between their inputs. To address this issue, we propose a simple yet effective method called Adaptive Text-Image Harmony (ATIH) to generate novel and surprising objects. First, we introduce a scale factor and an injection step to balance text and image features in crossattention and to preserve image information in self-attention during the text-image inversion diffusion process, respectively.



A Problem Formulation using L1 and L

Neural Information Processing Systems

Proof of Lemma 2. Let U be the data set associated to ฮฝ. Proof of Lemma 3. First, we prove that the property holds for the root node. We wish to prove the property for some unexplored leaf after the iteration. This is trivial if the leaf ฮฝ is not expanded in that iteration. Suppose the leaf ฮฝ is expanded. Proof of Lemma 5. From Lemma 2, we note that Q Consider any path from the root to a leaf whose length is mK for some integer K > 0. We note that for each node ฮฝ and any of its children ฮฝ (Lemma 5).



Fisher Flow Matching for Generative Modeling over Discrete Data Oscar Davis 1 Samuel Kessler 1

Neural Information Processing Systems

Generative modeling over discrete data has recently seen numerous success stories, with applications spanning language modeling, biological sequence design, and graph-structured molecular data. The predominant generative modeling paradigm for discrete data is still autoregressive, with more recent alternatives based on diffusion or flow-matching falling short of their impressive performance in continuous data settings, such as image or video generation.


The Importance of Being Scalable: Improving the Speed and Accuracy of Neural Network Interatomic Potentials Across Chemical Domains

Neural Information Processing Systems

Scaling has been a critical factor in improving model performance and generalization across various fields of machine learning. It involves how a model's performance changes with increases in model size or input data, as well as how efficiently computational resources are utilized to support this growth. Despite successes in scaling other types of machine learning models, the study of scaling in Neural Network Interatomic Potentials (NNIPs) remains limited. NNIPs act as surrogate models for ab initio quantum mechanical calculations, predicting the energy and forces between atoms in molecules and materials based on atomic configurations. The dominant paradigm in this field is to incorporate numerous physical domain constraints into the model, such as symmetry constraints like rotational equivariance. We contend that these increasingly complex domain constraints inhibit the scaling ability of NNIPs, and such strategies are likely to cause model performance to plateau in the long run. In this work, we take an alternative approach and start by systematically studying NNIP scaling properties and strategies. Our findings indicate that scaling the model through attention mechanisms is both efficient and improves model expressivity. These insights motivate us to develop an NNIP architecture designed for scalability: the Efficiently Scaled Attention Interatomic Potential (EScAIP).



SemFlow: Binding Semantic Segmentation and Image Synthesis via Rectified Flow Chaoyang Wang 1 Xiangtai Li1 Lu Qi2 Henghui Ding 3

Neural Information Processing Systems

Semantic segmentation and semantic image synthesis are two representative tasks in visual perception and generation. While existing methods consider them as two distinct tasks, we propose a unified framework (SemFlow) and model them as a pair of reverse problems. Specifically, motivated by rectified flow theory, we train an ordinary differential equation (ODE) model to transport between the distributions of real images and semantic masks. As the training object is symmetric, samples belonging to the two distributions, images and semantic masks, can be effortlessly transferred reversibly. For semantic segmentation, our approach solves the contradiction between the randomness of diffusion outputs and the uniqueness of segmentation results. For image synthesis, we propose a finite perturbation approach to enhance the diversity of generated results without changing the semantic categories. Experiments show that our SemFlow achieves competitive results on semantic segmentation and semantic image synthesis tasks. We hope this simple framework will motivate people to rethink the unification of low-level and high-level vision.