Plotting

RoME: A Robust Mixed-Effects Bandit Algorithm for Optimizing Mobile Health Interventions

Neural Information Processing Systems

Mobile health leverages personalized and contextually tailored interventions optimized through bandit and reinforcement learning algorithms. In practice, however, challenges such as participant heterogeneity, nonstationarity, and nonlinear relationships hinder algorithm performance. We propose RoME, a Robust Mixed-Effects contextual bandit algorithm that simultaneously addresses these challenges via (1) modeling the differential reward with user-and time-specific random effects, (2) network cohesion penalties, and (3) debiased machine learning for flexible estimation of baseline rewards. We establish a high-probability regret bound that depends solely on the dimension of the differential-reward model, enabling us to achieve robust regret bounds even when the baseline reward is highly complex. We demonstrate the superior performance of the RoME algorithm in a simulation and two off-policy evaluation studies.



Query-Based Adversarial Prompt Generation

Neural Information Processing Systems

Recent work has shown it is possible to construct adversarial examples that cause aligned language models to emit harmful strings or perform harmful behavior. Existing attacks work either in the white-box setting (with full access to the model weights), or through transferability: the phenomenon that adversarial examples crafted on one model often remain effective on other models. We improve on prior work with a query-based attack that leverages API access to a remote language model to construct adversarial examples that cause the model to emit harmful strings with (much) higher probability than with transfer-only attacks. We validate our attack on GPT-3.5 and OpenAI's safety classifier; we can cause GPT-3.5 to emit harmful strings that current transfer attacks fail at, and we can evade the OpenAI and Llama Guard safety classifiers with nearly 100% probability.


CondTSF: One-line Plugin of Dataset Condensation for Time Series Forecasting

Neural Information Processing Systems

Dataset condensation is a newborn technique that generates a small dataset that can be used in training deep neural networks (DNNs) to lower storage and training costs. The objective of dataset condensation is to ensure that the model trained with the synthetic dataset can perform comparably to the model trained with full datasets. However, existing methods predominantly concentrate on classification tasks, posing challenges in their adaptation to time series forecasting (TS-forecasting). This challenge arises from disparities in the evaluation of synthetic data. In classification, the synthetic data is considered well-distilled if the model trained with the full dataset and the model trained with the synthetic dataset yield identical labels for the same input, regardless of variations in output logits distribution. Conversely, in TS-forecasting, the effectiveness of synthetic data distillation is determined by the distance between predictions of the two models.


Equivariant Machine Learning on Graphs with Nonlinear Spectral Filters Ya-Wei Eileen Lin Ron Levie Viterbi Faculty of Electrical and Computer Engineering, Technion

Neural Information Processing Systems

Equivariant machine learning is an approach for designing deep learning models that respect the symmetries of the problem, with the aim of reducing model complexity and improving generalization. In this paper, we focus on an extension of shift equivariance, which is the basis of convolution networks on images, to general graphs. Unlike images, graphs do not have a natural notion of domain translation. Therefore, we consider the graph functional shifts as the symmetry group: the unitary operators that commute with the graph shift operator. Notably, such symmetries operate in the signal space rather than directly in the spatial space.


Where's Waldo: Diffusion Features For Personalized Segmentation and Retrieval

Neural Information Processing Systems

Personalized retrieval and segmentation aim to locate specific instances within a dataset based on an input image and a short description of the reference instance. While supervised methods are effective, they require extensive labeled data for training. Recently, self-supervised foundation models have been introduced to these tasks showing comparable results to supervised methods. However, a significant flaw in these models is evident: they struggle to locate a desired instance when other instances within the same class are presented. In this paper, we explore text-to-image diffusion models for these tasks. Specifically, we propose a novel approach called PDM for Personalized Diffusion Features Matching, that leverages intermediate features of pre-trained text-to-image models for personalization tasks without any additional training. PDM demonstrates superior performance on popular retrieval and segmentation benchmarks, outperforming even super-Correspondence to: Dvir Samuel .


Event-3DGS: Event-based 3D Reconstruction Using 3D Gaussian Splatting

Neural Information Processing Systems

Event cameras, offering high temporal resolution and high dynamic range, have brought a new perspective to addressing 3D reconstruction challenges in fastmotion and low-light scenarios. Most methods use the Neural Radiance Field (NeRF) for event-based photorealistic 3D reconstruction. However, these NeRF methods suffer from time-consuming training and inference, as well as limited scene-editing capabilities of implicit representations. To address these problems, we propose Event-3DGS, the first event-based reconstruction using 3D Gaussian splatting (3DGS) for synthesizing novel views freely from event streams. Technically, we first propose an event-based 3DGS framework that directly processes event data and reconstructs 3D scenes by simultaneously optimizing scenario and sensor parameters. Then, we present a high-pass filter-based photovoltage estimation module, which effectively reduces noise in event data to improve the robustness of our method in real-world scenarios.


Generalizable One-shot 3D Neural Head Avatar

Neural Information Processing Systems

We present a method that reconstructs and animates a 3D head avatar from a singleview portrait image. Existing methods either involve time-consuming optimization for a specific person with multiple images, or they struggle to synthesize intricate appearance details beyond the facial region. To address these limitations, we propose a framework that not only generalizes to unseen identities based on a single-view image without requiring person-specific optimization, but also captures characteristic details within and beyond the face area (e.g.


Efficient Video-to-Audio Generation Network with Rectified Flow Matching

Neural Information Processing Systems

Video-to-audio (V2A) generation aims to synthesize content-matching audio from silent video, and it remains challenging to build V2A models with high generation quality, efficiency, and visual-audio temporal synchrony.


On the Strong Correlation Between Model Invariance and Generalization

Neural Information Processing Systems

Generalization and invariance are two essential properties of machine learning models. Generalization captures a model's ability to classify unseen data while invariance measures the consistency of model predictions on transformed data. Existing research suggests a positive relationship: a model generalizing well should be invariant to certain visual factors. Building on this qualitative implication we make two contributions. First, we introduce effective invariance (EI), a simple and reasonable measure of model invariance which does not rely on image labels.