Not enough data to create a plot.
Try a different view from the menu above.
Boosting the Performance of Generic Deep Neural Network Frameworks with Log-supermodular CRFs
Historically, conditional random fields (CRFs) were popular tools in a variety of application areas from computer vision to natural language processing, but due to their higher computational cost and weaker practical performance, they have, in many situations, fallen out of favor and been replaced by end-to-end deep neural network (DNN) solutions. More recently, combined DNN-CRF approaches have been considered, but their speed and practical performance still falls short of the best performing pure DNN solutions. In this work, we present a generic combined approach in which a log-supermodular CRF acts as a regularizer to encourage similarity between outputs in a structured prediction task. We show that this combined approach is widely applicable, practical (it incurs only a moderate overhead on top of the base DNN solution) and, in some cases, it can rival carefully engineered pure DNN solutions for the same structured prediction task.
LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS
Recent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15 compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.
Speaking Your Language: Spatial Relationships in Interpretable Emergent Communication Olaf Lipinski Adam J. Sobey 2,1 Federico Cerutti 3 Timothy J. Norman
Effective communication requires the ability to refer to specific parts of an observation in relation to others. While emergent communication literature shows success in developing various language properties, no research has shown the emergence of such positional references. This paper demonstrates how agents can communicate about spatial relationships within their observations. The results indicate that agents can develop a language capable of expressing the relationships between parts of their observation, achieving over 90% accuracy when trained in a referential game which requires such communication. Using a collocation measure, we demonstrate how the agents create such references. This analysis suggests that agents use a mixture of non-compositional and compositional messages to convey spatial relationships. We also show that the emergent language is interpretable by humans. The translation accuracy is tested by communicating with the receiver agent, where the receiver achieves over 78% accuracy using parts of this lexicon, confirming that the interpretation of the emergent language was successful.
a1e6783e4d739196cad3336f12d402bf-Paper-Conference.pdf
Imitation learning uses data for training policies to solve complex tasks. However, when the training data is collected from human demonstrators, it often leads to multimodal distributions because of the variability in human actions. Most imitation learning methods rely on a maximum likelihood (ML) objective to learn a parameterized policy, but this can result in suboptimal or unsafe behavior due to the mode-averaging property of the ML objective. In this work, we propose Information Maximizing Curriculum, a curriculum-based approach that assigns a weight to each data point and encourages the model to specialize in the data it can represent, effectively mitigating the mode-averaging problem by allowing the model to ignore data from modes it cannot represent. To cover all modes and thus, enable diverse behavior, we extend our approach to a mixture of experts (MoE) policy, where each mixture component selects its own subset of the training data for learning. A novel, maximum entropy-based objective is proposed to achieve full coverage of the dataset, thereby enabling the policy to encompass all modes within the data distribution. We demonstrate the effectiveness of our approach on complex simulated control tasks using diverse human demonstrations, achieving superior performance compared to state-of-the-art methods.
Learning Partitions from Context
In this paper, we study the problem of learning the structure of a discrete set of N tokens based on their interactions with other tokens. We focus on a setting where the tokens can be partitioned into a small number of classes, and there exists a real-valued function f defined on certain sets of tokens. This function, which captures the interactions between tokens, depends only on the class memberships of its arguments. The goal is to recover the class memberships of all tokens from a finite number of samples of f. We begin by analyzing this problem from both complexity-theoretic and information-theoretic viewpoints. We prove that it is NP-complete in general, and for random instances, we show that on the order of N ln(N) samples, implying very sparse interactions, suffice to identify the partition.
Neural Localizer Fields for Continuous 3D Human Pose and Shape Estimation Gerard Pons-Moll University of Tübingen, Germany, 2
With the explosive growth of available training data, single-image 3D human modeling is ahead of a transition to a data-centric paradigm. A key to successfully exploiting data scale is to design flexible models that can be supervised from various heterogeneous data sources produced by different researchers or vendors. To this end, we propose a simple yet powerful paradigm for seamlessly unifying different human pose and shape-related tasks and datasets. Our formulation is centered on the ability - both at training and test time - to query any arbitrary point of the human volume, and obtain its estimated location in 3D. We achieve this by learning a continuous neural field of body point localizer functions, each of which is a differently parameterized 3D heatmap-based convolutional point localizer (detector). For generating parametric output, we propose an efficient post-processing step for fitting SMPL-family body models to nonparametric joint and vertex predictions. With this approach, we can naturally exploit differently annotated data sources including mesh, 2D/3D skeleton and dense pose, without having to convert between them, and thereby train large-scale 3D human mesh and skeleton estimation models that considerably outperform the state-of-the-art on several public benchmarks including 3DPW, EMDB, EHF, SSP-3D and AGORA.
Deconstructing Data Reconstruction: Multiclass, Weight Decay and General Losses
Memorization of training data is an active research area, yet our understanding of the inner workings of neural networks is still in its infancy. Recently, Haim et al. [2022] proposed a scheme to reconstruct training samples from multilayer perceptron binary classifiers, effectively demonstrating that a large portion of training samples are encoded in the parameters of such networks. In this work, we extend their findings in several directions, including reconstruction from multiclass and convolutional neural networks. We derive a more general reconstruction scheme which is applicable to a wider range of loss functions such as regression losses. Moreover, we study the various factors that contribute to networks' susceptibility to such reconstruction schemes. Intriguingly, we observe that using weight decay during training increases reconstructability both in terms of quantity and quality. Additionally, we examine the influence of the number of neurons relative to the number of training samples on the reconstructability.